

HIT-HY 200-A
Scellement d'armatures avec résine

Avantages

- Nettoyage automatique du trou avec les mèches creuses TE-CD et TEYD en combinaison avec les aspirateurs Hilti

Agréments		
ETE	$11 / 0492$	Statique
DTA	$3 / 13-749$	Sismique

Données techniques

T° à l'installation	-10° à $+40^{\circ} \mathrm{C}$
T° en service	-40° à $+80^{\circ} \mathrm{C}$

Désignation	Contenu par cartouche	Conditionnement	Code article
HIT-HY 200-A 330 ml	330 ml	1	2022696
HIT-HY 200-A 500 ml	500 ml	1	2022697

Produits complémentaires

Désignation	Conditionnement	Code article
Pince électrique HDE 500-A22 équipée	1	3567472
Mèche-creuse TE-CD/TE-YD	1	selon longueur
Mélangeur HIT-RE-M	1	337111
Pince d'injection pneumatique P8000D	1	373959

CARACTÉRISTIQUES TECHNIQUES

Tenue sous charges de longue durée

Des essais de tenue sous charges de longue durée selon le guide ETAG 001 partie 5 et le TR 023 ont été effectués dans les conditions suivantes: en milieu sec à $50^{\circ} \mathrm{C}$ pendant 90 jours.

Ces essais démontrent un excellent comportement du scellement à base de résine HIT-HY 200-A : faibles déplacements avec stabilisation dans le temps, charge de ruine résiduelle supérieure à la valeur de référence.

Influence des cycles de gel/dégel

Des essais de gel/dégel selon le guide ETAG 001 Partie 5 ont été effectués.
Un essai de traction est effectué après 50 cycles se décomposant comme suit :

- Monter en température à $(20 \pm 2)^{\circ} \mathrm{C}$ en 1 heure et stabiliser pendant 7 heures (8 heures au total)
- Descendre en température à - $(20 \pm 2)^{\circ} \mathrm{C}$ en 2 heures et stabiliser pendant 14 heures (16 heures au total)

Les résultats montrent que la résine de scellement HIT-HY 200-A est insensible aux effets de cycles gel/dégel.

Comportement à l'eau

- Eau : La résine de scellement HIT-HY 200-A est étanche (essai selon norme ISO 1920-5) et résistante à l'eau, sans risque de toxicité pour le milieu environnant.
- Eau potable : Elle est certifiée par «NSF », organisme américain, selon la norme NSF/ANSI St 61 «Effets sur la santé des systèmes et produits en contact avec l'eau potable ». Les essais ont été effectués à $60^{\circ} \mathrm{C}$, ce qui correspond à la température de l'eau chaude domestique. L'emploi de la résine de scellement HIT-HY 200-A est possible dans le cas de travaux de cuvelage : la résine assurera une étanchéité continue avec le support lorsque les scellements sont effectués au travers de ce cuvelage. De plus, après durcissement, la résine HIT-HY 200-A ne comporte aucun risque de contaminer l'eau potable environnante (ex : réservoirs d'eau).
- Supports humides : La résine de scellement HIT-HY 200-A peut être employée sur des supports constamment humides sans modification des performances.
- Eau salée : La résine de scellement HIT-HY 200-A a été testée chimiquement à l'eau salée : elle est résistante (voir tableau résistance aux produits chimiques).

Résistance aux produits chimiques

Le tableau suivant fournit une synthèse de l'influence de différents produits chimiques sur le HIT-HY 200-A mélangé et sec dans une plage de température entre $15^{\circ} \mathrm{C}$ à $25^{\circ} \mathrm{C}$.

Si la résine est exposée à plusieurs produits chimiques en même temps, une sélection préliminaire peut être effectuée sur la base de ce tableau. Des hautes températures, de larges variations de température et des radiations peuvent réduire la résistance aux produits chimiques et ces conditions doivent être prises en compte.

Réactifs	Résistance	Non résistant	Court terme
Air	-		
Acide acétique 10\%	-		
Acétone			-
Ammoniac 5\%	-		
Alcool benzyliquel		\bullet	
Acide chlorique 10\%			-
Chlorure de chaux 10\%	-		
Acide citrique 10\%	-		
Plastifiant béton	-		
Sel (chloride de calcium)	-		
Eau déminéralisée	-		
Diesel	-		
Suspension de poussière de forage pH 13,2	-		
Ethanol 96\%		-	
Acétate d'étthyle		\bullet	
Acide formique 10\%	-		
Huile de décoffrage	-		
Essence	-		
Glycole			\bullet
Péroxide d'hydrogène10\%			-
Acide lactique 10\%	-		
Huile de moteur oil	-		
Méthyléthylcétone			\bullet
Acide nitrique 10\%			-
Acide phosphorique 10\%	\bullet		
Hydroxide de potassium pH 13,2	-		
Eau de mer	\bullet		
Boues d'épuration	\bullet		
Carbonate de sodium 10\%	\bullet		
Hypochlorite de sodium 2\%	\bullet		
Acide sulfurique 10\%	\bullet		
Acide sulfurique 30%	\bullet		
Toluène			\bullet
Xylène			\bullet

Composés organiques volatiles (COV)

La résine HIT-RE 500 V 3 contient $27.0 \mathrm{~g} / \mathrm{l}$ de composés organiques volatiles. La résine HIT-HY 200-A est donc un matériau à faible émission qui peut être utilisé pour toutes applications intérieures.

Conductivité électrique

La résine de scellement HIT-HY 200-A dans son état mélange sec n'est pas électriquement conductive. Sa résistivité électrique est de 15,5.109 $\Omega . \mathrm{cm}$ selon (DIN IEC 93-12.93). Elle est bien adaptée pour réaliser des ancrages isolants électriquement (ex applications : rail, métro).

CONDITIONS DE POSE

Temps de séchage
Données valables pour un matériau support sec uniquement. Pour un matériau support humide, les temps doivent être doublés.

HIT-HY 200-A

Température du matériau support	Durée pratique d'utilisation "t ${ }_{\text {work }}$	Temps de durcissement " $\mathrm{t}_{\text {cure }} "$
$-10^{\circ} \mathrm{C}$ à $-5^{\circ} \mathrm{C}$	$1,5 \mathrm{~h}$	7 h
$-4^{\circ} \mathrm{C}$ à $0^{\circ} \mathrm{C}$	50 min	4 h
$1^{\circ} \mathrm{C}$ à $5{ }^{\circ} \mathrm{C}$	25 min	2 h
$6{ }^{\circ} \mathrm{C}$ à $10^{\circ} \mathrm{C}$	15 min	1 h
$11^{\circ} \mathrm{C}$ à $20^{\circ} \mathrm{C}$	7 min	30 min
$21^{\circ} \mathrm{C}$ à $30^{\circ} \mathrm{C}$	4 min	30 min
$31^{\circ} \mathrm{C}$ à $40^{\circ} \mathrm{C}$	3 min	30 min

1. Pendant le temps de manipulation (DPU ou $\mathrm{t}_{\text {work }}$), il est possible d'ajuster le fer à béton dans le trou ou de rajouter de la résine.
2. à partir de $\mathrm{t}_{\text {cure }}$ le durcissement de la résine est complet, le fer peut être mis en charge.
3. En béton humide, ces temps doivent être doublés.

Diamètre de perçage

$\boldsymbol{\sigma}$ Armature $(\mathbf{m m})$	Perçage rotation-percussion	Marteau perçage à la mèche creuse	Perçage à air comprimé
	$12(10)$	12	
$\mathbf{8}$	$14(12)$	$14(12)$	
$\mathbf{1 0}$	$16(14)$	$16(14)$	17
$\mathbf{1 2}$	18	18	17
$\mathbf{1 4}$	20	20	20
$\mathbf{1 6}$	22	22	22
$\mathbf{1 8}$	25	25	26
$\mathbf{2 0}$	28	28	28
$\mathbf{2 2}$	32	32	32
$\mathbf{2 4}$	32	32	32
$\mathbf{2 5}$	35		35
$\mathbf{2 6}$	35		35
$\mathbf{2 8}$	37		35
$\mathbf{3 0}$	40		40
$\mathbf{3 2}$			

INSTRUCTIONS DE POSE

Percer le trou

Note: Avant perçage, éliminer le béton carbonisé, nettoyer les surfaces de contact.
En cas de trou abandonné, le trou doit être de résine.

Percer le trou à la profondeur requise avec une mèche creuse Hilti TE-CD ou TE-YD de taille appropriée connectée à un aspirateur Hilti. Cette méthode de perçage nettoie correctement le trou et élimine la poussière pendant le perçage.

Ou percer le trou à la profondeur d'implantation requise en utilisant un marteau perforateur en rotation-percussion et une mèche de diamètre approprié, un forage à air comprimé ou une carotteuse.

Marteau perforateur (HD)

Air comprimé (CA)

Recouvrement d'armatures:

Mesurer et contrôler l'enrobage de béton c

- $\mathrm{c}_{\text {drill }}=\mathrm{c}+\varnothing / 2$
- Percer parallèlement à la surface et aux fers d'armature existants
- Lorsque cela est approprié, utiliser le système d'aide au perçage Hilti HIT-BH.

Système d'aide au perçage

Exemple : HIT-BH

Pour les trous de longueur $I_{b}>20 \mathrm{~cm}$, utiliser un système d'aide au perçage.
Il y a trois différentes possibilités:
a. Système d'aide au perçage Hilti HIT-BH
b. Niveau
c. Contrôle visuel

NETTOYER LE TROU

non nécessaire avec perçage avec mèche creuse Hilti TE-CD / TE-YD.
Le trou doit être exempt de poussière, débris, eau, glace, huile, graisse et autres contaminants avant d'injecter la résine.
Avant de sceller un fer, le trou doit être nettoyé des poussières et des débris par l'une des deux méthodes décrites ci-dessous.

NETTOYAGE À AIR COMPRIMÉ

Soufflage 2 fois depuis le fond du trou avec de l'air comprimé exempt d'huile (minimum 6 bar à 100 litres par minute (LPM)) jusqu'à ce que l'air qui ressort soit exempt de poussière notable.
Pour les trous de diamètre $\geq 32 \mathrm{~mm}$ le flux d'air fourni par le compresseur doit être d'au moins $140 \mathrm{~m}^{3} / \mathrm{h}$.

Brossage 2 fois avec l'écouvillon de taille spécifiée (\varnothing écouvillon $\geq \varnothing$ trou) en insérant l'écouvillon métallique rond au fond du trou avec un mouvement tournant.
L'écouvillon doit présenter une résistance naturelle à l'entrée dans le trou.
Si ce n'est pas le cas, utiliser un nouvel écouvillon ou un écouvillon de diamètre supérieur.

Soufflage 2 fois encore avec de l'air comprimé exempt d'huile jusqu'à ce que l'air qui ressort soit exempt de poussière notable.
Si nécessaire, utiliser les accessoires complémentaires et les extensions pour atteindre effectivement le fond du trou.

Trous profonds - Soufflage

Pour les trous plus profonds que 250 mm (pour $\varnothing=8-12 \mathrm{~mm}$) ou $20 \times \varnothing$ (pour $\varnothing>12 \mathrm{~mm}$), utiliser l'embout à air approprié Hilti HIT-DL.

Précautions de sécurité : Ne pas respirer la poussière de béton. L’utilisation du système de récupération de poussière Hilti DRS est recommandée. Pour les trous plus profonds que 250 mm (pour $\varnothing=8-12 \mathrm{~mm}$) ou $20 \times \varnothing$ (pour $\varnothing>12 \mathrm{~mm}$), utiliser un brossage mécanisé et les extensions d'écouvillons Hilti HIT-RBS.
Visser l'écouvillon métallique rond HIT-RB à une des extrémités de(s) l'extension(s) d'écouvillon HIT-RBS, de telle manière que la longueur totale de l'écouvillon soit suffisante pour atteindre le fond du trou. Fixer l'autre extrémité de l'extension au mandrin TE-C/TE-Y.
Précautions de sécurité :

- Démarrer lentement les opérations de brossage
- Ne démarrer le brossage que lorsque l'écouvillon est entièrement dans le trou.

NETTOYAGE MANUEL

En alternative au nettoyage à air comprimé, un nettoyage manuel est autorisé pour des trous de diamètre $\mathrm{d}_{0} \leq 20 \mathrm{~mm}$ et des longueurs de scellement I_{b} resp. $I_{\text {e,ges }} \leq 160 \mathrm{~mm}$ ou 10 d .
Souffler : 4 coups avec la pompe manuelle Hilti à partir du fond du trou jusqu'à ce que l'air qui ressort soit exempt de poussière notable.
Brossage : 4 fois avec l'écouvillon de la taille spécifiée (diamètre écouvillon \geq diamètre du trou) en insérant l'écouvillon métallique rond au fond du trou avec un mouvement tournant.
Le diamètre de l'écouvillon métallique rond doit être vérifié avant utilisation. L'écouvillon doit présenter une résistance naturelle à l'entrée dans le trou. Si ce n'est pas le cas, utiliser un nouvel écouvillon ou un écouvillon de diamètre supérieur.

Soufflage : 4 coups avec la pompe manuelle Hilti à partir du fond du trou jusqu'à
 ce que l'air qui ressort soit exempt de poussière notable.

Nettoyage manuel (MC) : Pompe
soufflante manuelle Hilti pour nettoyage de trou de diamètre $d_{0} \leq 20 \mathrm{~mm}$ et longueurs de scellement $h_{0} \leq 160 \mathrm{~mm}$

Marque de niveau de résine

PRÉPARER LA BARRE ET LA CARTOUCHE

Avant utilisation, s'assurer que la barre est sèche et exempte d'huile et autres résidus.
Marquer la profondeur d'implantation sur la barre (par ex avec du scotch) $\rightarrow I_{v}$ Insérer la barre dans le trou pour vérifier le trou et la profondeur I_{v} resp. $I_{e, g e s}$

Préparation du système d'injection

- Respecter les instructions d'utilisation de la pince à injecter
- Respecter les instructions de pose de la résine
- Fixer soigneusement la buse mélangeuse Hilti HIT-RE-M à la cartouche.
- Insérer la cartouche dans le porte cartouche et le tourner dans la pince.

Jeter les premières pressions. La cartouche s'ouvre automatiquement lorsque l'injection commence. En fonction de la taille de la cartouche, les premières pressions doivent être jetées.
Après un changement de buses, les premières pressions doivent également être jetées. Pour toute nouvelle cartouche, une nouvelle buse doit être utilisée.
330 ml 2 pressions
500 ml 3 pressions
$<5^{\circ} \mathrm{C} \quad 4$ pressions

INJECTION DE LA RÉSINE SANS FORMER DE BULLE D'AIR

Injection de la résine pour trou de profondeur $\leq \mathbf{2 5 0} \mathbf{~ m m}$:
Injecter la résine à partir du fond du trou vers l'extrémité et retirer lentement et progressivement la buse mélangeuse après chaque pression.
Remplir le trou jusqu'à peu près les $2 / 3$, ou comme demandé pour assurer que l'espace annulaire entre le fer et le béton soit complètement rempli sur toute la longueur de scellement.
Après l'injection, dépressuriser la pince en pressant le bouton de verrouillage. Ceci permettra d'éviter de continuer à injecter la résine.

Injection de la résine pour trou de profondeur $\mathbf{>} \mathbf{2 5 0} \mathbf{~ m m}$ ou application au plafond
Assembler la buse HIT-RE-M, la rallonge et l'embout HIT-SZ. Pour combiner plusieurs rallonges de buse, utiliser un coupleur HIT-DL K. II est possible de substituer les rallonges de buses avec des tubes plastiques. L'embout HIT-SZ doit être combiné avec des coupleurs HIT-VL 16

Marquer le niveau nécessaire de résine I_{m} et la longueur d'ancrage I_{b} resp. $I_{e, g e s}$ avec un marqueur sur la buse ou la rallonge :
Estimation rapide: $I_{m}=1 / 3 \cdot I_{b}$ resp.

$$
I_{m}=1 / 3 \cdot I_{\mathrm{e}, \text { ges }}
$$

Formule précise pour volume de résine optimum :
$I_{m}=I_{b}$ rsp. $I_{e, g e s}\left\{1,2 \frac{d_{s}^{2}-0,2}{d_{0}^{2}}[m m]\right.$
Insérer l'embout à injection au fond du trou. Commencer l'injection en laissant la pression de la résine injectée pousser l'embout vers l'extrémité du trou.
Remplir le trou jusqu'à peu près les $2 / 3$, ou comme demandé pour assurer que l'espace annulaire entre le fer et le béton soit complètement rempli sur toute la longueur de scellement.
Continuer l'injection de la résine jusqu'à ce que la marque de niveau de résine I_{m} soit visible.
Après l'injection, dépressuriser la pince en pressant le bouton de verrouillage.
Ceci permettra d'éviter de continuer à injecter la résine.

INSÉRER LA BARRE

Pour une installation facile, insérer la barre avec une légère rotation dans le trou jusqu'à ce que la marque de profondeur soit à la surface du béton.

Applications au plafond :

Pendant l'insertion de la barre, de la résine peut tomber du trou. Pour collecter cette résine, on peut utiliser des collecteurs HIT-OCW.
Supporter et sécuriser la barre pour éviter qu'elle tombe jusqu'à ce que la résine ait durci, en utilisant des coins HIT-OHW.

Après installation de la barre, l'espace annulaire doit être complètement rempli de résine.
Installation correcte

- Profondeur d'implantation atteinte I_{b} : Marque de profondeur à la surface du béton.
- La résine excédentaire ressort du trou après avoir insérer le fer jusqu'au repère d'enfoncement.

Respecter la durée pratique d'utilisation " $\mathrm{t}_{\text {work }}$ ", qui varie en fonction de la température du matériau support. Des légers ajustements du fer sont possibles pendant la durée pratique d'utilisation.

La charge complète ne peut être appliquée qu'après le temps de durcissement " $\mathrm{t}_{\text {cure }}$ ".

PERFORMANCES DU HIT-HY 200-A
Adhérence de calcul f_{bd} du HIT-HY 200-A ($\mathrm{N} / \mathrm{mm}^{2}$)

- Selon ATE 11/0492 du 26/06/2014

Coefficient fonction de la classe de béton et de la méthode de perçage.

Classe de résistance du béton	$\mathrm{C} 12 / 15$	$\mathrm{C} 16 / 20$	$\mathrm{C} 20 / 25$	$\mathrm{C} 25 / 30$	$\mathrm{C} 30 / 37$	$\mathrm{C} 35 / 45$	$\mathrm{C} 40 / 50$	$\mathrm{C45/55}$	$\mathrm{C} 50 / 60$
Trous percés au marteau perforateur : Coefficient pour la longueur minimale $\mathrm{k}=1$	ou mèche creuse ou air comprimé								

Valeur de calcul de la contrainte ultime d'adhérence $f_{b d}$ en $\mathrm{N} / \mathrm{mm}^{2}$ pour perçage marteau perforateur et perçage à air comprimé

- Selon EN 1992-1-1: 2004+ AC: 2010 pour bonnes conditions d'adhérence
(pour autres conditions d'adhérence, multiplier les valeurs par 0,7).

Armature cheville en tension	Valeur de calcul de la contrainte d'adhérence $\mathrm{f}_{\mathrm{bd}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$									
	Classe de résistance du béton	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
$\begin{gathered} \varnothing(\mathrm{mm}) \\ 8 \text { a } 32 \mathrm{~mm} \\ \text { HZA-R } \\ M \text { à M24 } \end{gathered}$									Tu	
	8 à 32	1,6	2	2,3	2,7	3,0	3,4	3,7	4,0	4,3

Profondeur minimum d'ancrage

Armature HA B500B ($500 \mathrm{~N} / \mathrm{mm}^{2}$) en fonction du béton et de la méthode de perçage

Classe de résistance du béton	$\mathbf{C 2 0 / 2 5}$	$\mathbf{C 2 5 / 3 0}$	$\mathbf{C 3 0 / 3 7}$	$\mathbf{C 3 5 / 4 5}$	$\mathbf{C 4 0 / 5 0}$	$\mathbf{C 4 5 / 5 5}$	$\mathbf{C 5 0 / 6 0}$
Trous percés au marteau perforateur : Coefficient pour la longueur minimale $\mathbf{k}=\mathbf{1}$							
$\mathbf{8}$	113	100	100	100	100	100	100
$\mathbf{1 0}$	142	121	109	100	100	100	100
$\mathbf{1 2}$	170	145	130	120	120	120	120
$\mathbf{1 4}$	199	169	152	140	140	140	140
$\mathbf{1 6}$	227	193	174	160	160	160	160
$\mathbf{2 0}$	284	242	217	200	200	200	200
$\mathbf{2 5}$	355	302	272	250	250	250	250
$\mathbf{3 2}$	454	386	348	320	320	320	320

Performances du HIT-HY 200-A à température ambiante en zone sismique Adhérence de calcul $\mathrm{f}_{\text {bd,seism }}$ du HIT-HY 200-A ($\mathrm{N} / \mathrm{mm}^{2}$) - Selon DTA 3/13-749 Le tableau suivant donne les adhérences de calcul de la résine HIT-HY 200-A pour différentes classes de résistance de béton en zone sismique :

Classe de résistance du béton	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Trous percés au marteau perforateur : Coefficient pour la longueur minimale k=1							$W W$
8 à 32	2,3	2,7	2,7	2,7	2,7	2,7	

Profondeur minimum de sellement du HIT-HY 200-A (mm)
Fer HA B500B ($500 \mathrm{~N} / \mathrm{mm}^{2}$) en fonction du béton

Classe de résistance du béton	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
Trous percés au marteau perforateur : Coefficient pour la longueur minimale k=1							
8	130	111	111	111	111	111	111
10	163	139	139	139	139	139	139
12	196	167	167	167	167	167	167
14	228	194	194	194	194	194	194
16	261	222	222	222	222	222	222
20	326	278	278	278	278	278	278
25	408	347	347	347	347	347	347
32	522	445	445	445	445	445	445

Profondeur maximum autorisée en fonction de la pince utilisée

Diamètre du fer	Pince manuelle HDM 330 ou HDM 500 ou HDE 500	Pince sur batterie HDE 500-A22
8 à 32	700 mm	$1000 \mathrm{~mm}^{1)}$

1) Pour température de béton supérieure à $0^{\circ} \mathrm{C}$.

Tableau précalculé selon Eurocode 2 pour scellement de barres d'armatures en statique
Conditions : Résine HIT-HY 200-A - Barres B500B BÉTON C20/25-BONNES CONDITIONS
Toutes méthodes de perçages hors carottage
Connexion de poutre / dalle sur deux appuis

Longueur d'ancrage I_{bd}Charge de traction N_{Rd}
Entraxe supérieur à 7 diamètres
et pas de distance au bord, $\alpha_{2}=0,7$

[mm]	[mm]	[mm]	[kN]	[ml]		[mm]	[kN]	[ml]	
		113	6,56	9	(4)	113	9,37	9	(4)
		200	11,57	15	(7)	140	11,57	11	(5)
8	12	250	14,46	19	(8)	175	14,46	13	(6)
		378	21,85	28		264	21,85	20	
		142	10,24	13	(6)	142	14,63	13	(6)
		250	18,06	23	(10)	175	18,06	16	(7)
10	14 (12)	310	22,39	28		217	22,39	20	(9)
		395	28,53	36		277	28,53	25	
		473	34,15	43		331	34,15	30	
		170	14,75	18	(8)	170	21,07	18	(8)
		250	21,66	26	(12)	227	28,10	24	(11)
12	16 (14)	370	32,05	39		259	32,05	27	
		470	40,72	50		329	40,72	35	
		568	49,17	60		397	49,17	42	
		198	20,08	24		198	28,68	24	
		315	31,88	38		221	31,88	27	
14	18	430	43,52	52		301	43,52	36	
		545	55,15	66		382	55,15	46	
		661	66,93	80		463	66,93	56	
		227	26,23	31		227	37,46	31	
		360	41,61	49		252	41,61	34	
16	20	490	56,63	67		343	56,63	47	
		620	71,66	84		434	71,66	59	
		756	87,42	103		529	87,42	72	
		284	40,98	60		284	58,54	60	
		450	65,00	95		315	65,00	67	
20	25	615	88,83	130		431	88,83	91	
		780	112,66	165		546	112,66	116	
		946	136,59	201		662	136,59	140	
		354	64,03	133		354	91,47	133	
		515	93,05	194		472	121,96	178	
25	32	675	121,96	254		591	152,45	222	
		835	150,87	314		709	182,94	267	
		1000	180,69	376		827	213,43	311	
		454	104,90	246		454	149,86	246	
		590	136,38	320		605	199,81	328	
32	40	725	167,58	394		756	249,76	411	
		860	198,79	467		908	299,72	493	
		1000	231,15	543		1059	349,67	575	

NOTE : Le volume de résine théorique nécessaire est calculé avec 20% de pertes. Pour les petits diamètres (10,12 et 14), les valeurs entre parenthèses correspondent au diamètre minimum de perçage dès lors que la longueur de scellement est inférieure à 250 mm .

Tableau précalculé selon Eurocode 2 pour scellement de barres d'armatures en statique
Conditions : Résine HIT-HY 200-A - Barres B500B
BÉTON C25/30 - BONNES CONDITIONS
Toutes méthodes de perçages hors carottage Connexion de poutre / dalle sur deux appuis

\varnothing - Trou	Longueur d'ancrage $I_{b d}$	Charge de traction $\mathbf{N}_{\text {Rd }}$	Volume de résine théorique	Longueur d'ancrage $I_{b d}$	Charge de traction $\mathbf{N}_{\text {Rd }}$	Volume de résine théorique
Armature	Entraxe inférieur à 7 diamètres et / ou distance au bord, $\alpha_{2}=1$			Entraxe supérieur à 7 diamètres et pas de distance au bord, $\alpha_{2}=0,7$		

[mm]	[mm]	[mm]	[kN]	[ml]		[mm]	[kN]	[ml]	
		100	6,79	8	(3)	100	9,70	8	(3)
8	12 (10)	175	11,88	13	(6)	123	11,88	9	(4)
8	12 (10)	250	16,98	19	(8)	175	16,98	13	(6)
		322	21,85	24		225	21,85	17	(8)
		121	10,24	11	(5)	121	14,63	11	(5)
		190	16,11	17	(8)	133	16,11	12	(6)
10	14 (12)	250	21,20	23	(10)	175	21,20	16	(7)
		330	27,98	30		231	27,98	21	(10)
		403	34,15	36		282	34,15	26	
		145	14,75	15	(7)	145	21,07	15	(7)
		250	25,43	26	(12)	175	25,43	18	(9)
12	16 (14)	315	32,04	33		221	32,04	23	(11)
		400	40,68	42		280	40,68	30	
		484	49,17	51		338	49,17	36	
		169	20,08	20		169	28,68	20	
		270	32,08	33		189	32,08	23	
14	18	370	43,96	45		259	43,96	31	
		470	55,84	57		329	55,84	40	
		563	66,93	68		394	66,93	48	
		193	26,23	26		193	37,46	26	
		305	41,38	41		214	41,38	29	
16	20	420	56,98	57		294	56,98	40	
		535	72,59	73		375	72,59	51	
		644	87,42	87		451	87,42	61	
		242	40,98	51		242	58,54	51	
		385	65,28	82		270	65,28	57	
20	25	525	89,02	111		368	89,02	78	
		665	112,76	141		466	112,76	99	
		806	136,59	171		564	136,59	120	
		302	64,03	114		302	91,47	114	
		475	100,75	179		333	100,75	125	
25	32	650	137,87	244		455	137,87	171	
		825	174,99	310		578	174,99	217	
		1000	212,11	376		704	213,43	265	
		387	104,90	210		387	149,86	210	
		540	146,53	293		515	199,81	280	
32	40	695	188,59	377		644	249,76	350	
		850	230,65	461		773	299,72	420	
		1000	271,35	543		902	349,67	490	

[^0]Tableau précalculé selon Eurocode 2 pour scellement

de barres d'armatures en statique

Conditions : Résine HIT-HY 200-A - Barres B500B
BÉTON C30/37-BONNES CONDITIONS
Toutes méthodes de perçages hors carottage
Connexion de poutre / dalle sur deux appuis

| Longueur
 d'ancrage I_{bd} | Charge de
 traction N_{Rd} | Volume de
 résine théorique |
| ---: | :---: | :---: | | Entraxe supérieur à 7 diamètres |
| ---: |
| et pas de distance au bord, $\alpha_{2}=0,7$ |

[mm]	[mm]	[mm]	[kN]	[ml]		[mm]	[kN]	[ml]	
		100	7,55	8	(3)	100	10,78	8	(3)
		165	12,45	12	(6)	116	12,45	9	(4)
8	12 (10)	250	18,86	19	(8)	175	18,86	13	(6)
		290	21,85	22		203	21,85	15	(7)
		109	10,24	10	(5)	109	14,63	10	(5)
		170	16,01	15	(7)	119	16,01	11	(5)
10	14 (12)	250	23,55	23	(10)	175	23,55	16	(7)
		300	28,26	27		210	28,26	19	(9)
		363	34,15	33		254	34,15	23	
		131	14,75	14	(6)	131	21,07	14	(6)
		205	23,17	22	(10)	144	23,17	15	(7)
12	16 (14)	250	28,25	26	(12)	175	28,25	18	(9)
		355	40,12	37		249	40,12	26	(12)
		435	49,17	46		305	49,17	32	
		152	20,08	18		152	28,68	18	
		240	31,68	29		168	31,68	20	
14	18	330	43,56	40		231	43,56	28	
		420	55,44	51		294	55,44	35	
		507	66,93	61		355	66,93	43	
		174	26,23	24		174	37,46	24	
		275	41,46	37		193	41,46	26	
16	20	375	56,53	51		263	56,53	36	
		475	71,61	64		333	71,61	45	
		580	87,42	79		406	87,42	55	
		218	40,98	46		218	58,54	46	
		345	65,00	73		242	65,00	51	
20	25	470	88,55	100		329	88,55	70	
		595	112,10	126		417	112,10	88	
		725	136,59	154		508	136,59	108	
		272	64,03	102		272	91,47	102	
		430	101,34	162		301	101,34	113	
25	32	590	139,05	222		413	139,05	155	
		750	176,76	282		525	176,76	197	
		906	213,43	341		634	213,43	238	
		348	104,90	189		348	149,86	189	
		510	153,77	277		464	199,81	252	
32	40	675	203,51	366		580	249,76	315	
		840	253,26	456		696	299,72	378	
		1000	301,50	543		812	349,67	441	

[^1]

Tableau précalculé selon Eurocode 2 pour scellement de barres d'armatures en statique
Conditions : Résine HIT-HY 200-A - Barres B500B BÉTON C35/45-BONNES CONDITIONS
Toutes méthodes de perçages hors carottage Connexion de poutre / dalle sur deux appuis

\varnothing		Longueur d'ancrage $I_{b d}$	Charge de traction $\mathbf{N}_{\text {Rd }}$	Volume de résine théorique	Longueur d'ancrage $I_{b d}$	Charge de traction \mathbf{N}_{Rd}	Volume de résine théorique
Armature		Entraxe inférieur à 7 diamètres et / ou distance au bord, $\alpha_{2}=1$			Entraxe supérieur à 7 diamètres et pas de distance au bord, $\alpha_{2}=0,7$		

[mm]	[mm]	[mm]	[kN]	[ml]		[mm]	[kN]	[mI]	
		100	8,55	8	(3)	100	12,22	8	(3)
8	12 (10)	150	12,83	11	(5)	126	15,43	10	(4)
8	12	250	21,38	19	(8)	175	21,38	13	(6)
		256	21,85	19		179	21,85	13	(6)
		100	10,68	9	(4)	100	15,25	9	(4)
		155	16,55	14	(6)	131	19,98	12	(5)
10	14 (12)	210	22,42	19	(9)	147	22,42	13	(6)
		250	26,69	23	(10)	175	26,69	16	(7)
		320	34,15	29		224	34,15	20	(9)
		120	15,37	13	(6)	120	21,95	13	(6)
		185	23,69	20	(9)	157	28,76	17	(8)
12	16 (14)	250	32,02	26	(12)	175	32,02	18	(9)
		315	40,34	33		221	40,34	23	(11)
		384	49,17	41		269	49,17	28	
		140	20,94	17		140	29,92	17	
		215	32,16	26		151	32,16	18	
14	18	290	43,38	35		203	43,38	24	
		365	54,60	44		256	54,60	31	
		447	66,93	54		313	66,93	38	
		160	27,34	22		160	39,05	22	
		250	42,71	34		175	42,71	24	
16	20	340	58,09	46		238	58,09	32	
		430	73,47	58		301	73,47	41	
		512	87,42	69		358	87,42	49	
		200	42,70	42		200	61,01	42	
		310	66,19	66		217	66,19	46	
20	25	420	89,68	89		294	89,68	62	
		530	113,17	112		371	113,17	79	
		640	136,59	136		448	136,59	95	
		250	66,78	94		250	95,39	94	
		385	102,84	145		270	102,84	101	
25	32	520	138,89	196		364	138,89	137	
		655	174,95	246		459	174,95	172	
		799	213,43	300		559	213,43	210	
		320	109,34	174		320	156,21	174	
		490	167,43	266		343	167,43	186	
32	40	660	225,52	358		462	225,52	251	
		830	283,61	451		581	283,61	315	
		1000	341,70	543		716	349,67	389	

[^2]Tableau précalculé selon Eurocode 2 pour scellement

de barres d'armatures en statique

BÉTON C40/50 - BONNES CONDITIONS -
Toutes méthodes de perçages hors carottage
Connexion de poutre / dalle sur deux appuis

\varnothing Armature$\quad \varnothing$ Trou	Longueur d'ancrage I_{bd}	Charge de traction N_{Rd}	Volume de résine théorique

Longueur d'ancrage I_{bd}	Charge de traction N_{Rd}	Volume de résine théorique

[mm]	[mm]	[mm]	[kN]	[ml]		[mm]	[kN]	[ml]	
		100	9,31	8	(3)	100	13,29	8	(3)
		145	13,49	11	(5)	121	16,15	9	(4)
8	12	190	17,68	14	(6)	133	17,68	10	(5)
		235	21,85	18	(8)	164	21,85	12	(6)
		100	11,62	9	(4)	100	16,60	9	(4)
		150	17,43	14	(6)	126	20,98	11	(5)
10	14 (12)	200	23,24	18	(8)	140	23,24	13	(6)
		250	29,05	23	(10)	175	29,05	16	(7)
		294	34,15	27		206	34,15	19	(9)
		120	16,72	13	(6)	120	23,89	13	(6)
		180	25,09	19	(9)	152	30,21	16	(7)
12	16 (14)	250	34,84	26	(12)	175	34,84	18	(9)
		300	41,81	32		210	41,81	22	(10)
		353	49,17	37		247	49,17	26	(12)
		140	22,79	17		140	32,56	17	
		210	34,19	25		177	41,15	21	
14	18	280	45,58	34		196	45,58	24	
		350	56,98	42		245	56,98	30	
		411	66,93	50		288	66,93	35	
		160	29,75	22		160	42,50	22	
		240	44,62	33		202	53,73	27	
16	20	320	59,50	43		224	59,50	30	
		400	74,37	54		280	74,37	38	
		470	87,42	64		329	87,42	45	
		200	46,47	42		200	66,39	42	
		295	68,55	63		253	83,94	54	
20	25	390	90,62	83		273	90,62	58	
		485	112,69	103		340	112,69	72	
		588	136,59	125		411	136,59	87	
		250	72,67	94		250	103,81	94	
		370	107,55	139		316	131,22	119	
25	32	490	142,43	184		343	142,43	129	
		610	177,31	229		427	177,31	161	
		734	213,43	276		514	213,43	193	
		320	118,99	174		320	169,99	174	
		475	176,63	258		333	176,63	181	
32	40	630	234,27	342		441	234,27	239	
		785	291,90	426		550	291,90	298	
		940	349,67	510		658	349,67	357	

[^3]

Tableau précalculé selon Eurocode 2 pour scellement de barres d'armatures en statique
Conditions : Résine HIT-HY 200-A - Barres B500B BÉTON C45/55-BONNES CONDITIONS
Toutes méthodes de perçages hors carottage Connexion de poutre / dalle sur deux appuis

\varnothing Armature	\varnothing Trou	Longueur d'ancrage $I_{b d}$	Charge de traction N_{Rd}	Volume de résine théorique		Longueur d'ancrage $I_{b d}$	Charge de traction $\mathrm{N}_{\text {Rd }}$	Volume de résine théorique	
		Entraxe inférieur à 7 diamètres et / ou distance au bord, $\alpha_{2}=1$				Entraxe supérieur à 7 diamètres et pas de distance au bord, $\alpha_{2}=0,7$			
[mm]	[mm]	[mm]	[kN]	[mI]		[mm]	[kN]	[mI]	
8	12 (10)	100	10,06	8	(3)	100	14,37	8	(3)
		140	14,08	11	(5)	117	16,87	9	(4)
		180	18,11	14	(6)	135	19,36	10	(5)
		217	21,85	16	(7)	152	21,85	11	(5)
10	14 (12)	100	12,56	9	(4)	100	17,94	9	(4)
		145	18,21	13	(6)	123	21,99	11	(5)
		190	23,86	17	(8)	133	23,86	12	(6)
		250	31,40	23	(10)	175	31,40	16	(7)
		272	34,15	25		190	34,15	17	(8)
12	16 (14)	120	18,08	13	(6)	120	25,83	13	(6)
		170	25,61	18	(8)	147	31,66	16	(7)
		220	33,15	23	(11)	174	37,50	18	(9)
		250	37,67	26	(12)	201	43,34	21	(10)
		326	49,17	34		228	49,17	24	(11)
14	18	140	24,64	17		140	35,20	17	
		200	35,20	24		172	43,13	21	
		260	45,76	31		182	45,76	22	
		320	56,32	39		224	56,32	27	
		380	66,93	46		266	66,93	32	
16	20	160	32,16	22		160	45,94	22	
		230	46,23	31		196	56,31	27	
		300	60,30	41		210	60,30	29	
		370	74,37	50		259	74,37	35	
		435	87,42	59		304	87,42	41	
20	25	200	50,24	42		200	71,77	42	
		285	71,59	60		245	87,98	52	
		370	92,94	78		259	92,94	55	
		455	114,30	96		319	114,30	68	
		544	136,59	115		381	136,59	81	
25	32	250	78,56	94		250	112,23	94	
		355	111,56	133		306	137,53	115	
		460	144,55	173		322	144,55	121	
		565	177,55	212		396	177,55	149	
		679	213,43	255		475	213,43	179	
32	40	320	128,64	174		320	183,77	174	
		455	182,91	247		392	225,25	213	
		590	237,18	320		413	237,18	224	
		725	291,45	394		508	291,45	276	
		870	349,67	472		609	349,67	331	

[^4] correspondent au diamètre minimum de perçage dès lors que la longueur de scellement est inférieure à 250 mm .

Tableau précalculé selon Eurocode 2 pour scellement

de barres d'armatures en statique

Conditions : Résine HIT-HY 200-A - Barres B500B
BÉTON C50/60-BONNES CONDITIONS
Toutes méthodes de perçages hors carottage
Connexion de poutre / dalle sur deux appuis

$\left.\begin{array}{r}\begin{array}{c}\text { Longueur } \\ \text { d'ancrage } \mathrm{I}_{\mathrm{bd}}\end{array}\end{array} \begin{array}{c}\text { Charge de } \\ \text { traction } \mathrm{N}_{\mathrm{Rd}}\end{array} \quad \begin{array}{c}\text { Volume de } \\ \text { résine théorique }\end{array}\right]$

[mm]	[mm]	[mm]	[kN]	[ml]		[mm]	[kN]	[ml]	
		100	10,81	8	(3)	100	15,45	8	(3)
		135	14,60	10	(5)	114	17,58	9	(4)
8	12 (10)	170	18,38	13	(6)	128	19,72	10	(4)
		202	21,85	15	(7)	141	21,85	11	(5)
		100	13,50	9	(4)	100	19,29	9	(4)
		140	18,90	13	(6)	119	23,00	11	(5)
10	14 (12)	180	24,30	16	(7)	139	26,72	13	(6)
		250	33,76	23	(10)	175	33,76	16	(7)
		253	34,15	23		177	34,15	16	(7)
		120	19,44	13	(6)	120	27,77	13	(6)
		165	26,72	17	(8)	143	33,12	15	(7)
12	16 (14)	210	34,01	22	(10)	166	38,47	18	(8)
		250	40,49	26	(12)	189	43,82	20	(9)
		304	49,17	32		213	49,17	22	(10)
		140	26,49	17		140	37,84	17	
		195	36,89	24		167	45,11	20	
14	18	250	47,30	30		194	52,39	23	
		305	57,71	37		214	57,71	26	
		354	66,93	43		248	66,93	30	
		160	34,57	22		160	49,39	22	
		220	47,54	30		191	58,90	26	
16	20	280	60,50	38		222	68,40	30	
		340	73,47	46		238	73,47	32	
		405	87,42	55		283	87,42	38	
		200	54,01	42		200	77,15	42	
		275	74,26	58		239	92,01	51	
20	25	350	94,51	74		277	106,87	59	
		425	114,77	90		298	114,77	63	
		506	136,59	107		354	136,59	75	
		250	84,45	94		250	120,65	94	
		345	116,54	130		298	143,84	112	
25	32	440	148,64	165		346	167,04	130	
		535	180,73	201		375	180,73	141	
		632	213,43	238		442	213,43	166	
		320	138,29	174		320	197,55	174	
		440	190,15	239		382	235,58	207	
32	40	560	242,00	304		392	242,00	213	
		680	293,86	369		476	293,86	258	
		809	349,67	439		566	349,67	307	

[^5]

Tableau précalculé en sismique selon DTA pour scellement de barres d'armatures
Conditions : Résine HIT-HY 200-A - Barres B500B
BÉTON C20/25 - BONNES CONDITIONS
Forage marteau perforateur
Connexion de poutre / dalle sur deux appuis

\varnothing Armature	\varnothing Trou	Longueur d'ancrage $I_{b d}$	Charge de traction $\mathbf{N}_{\text {Rd }}$	Vol résine	de orique	Longueur d'ancrage $I_{b d}$	Charge de traction N_{Rd}	Volu résine	de orique
		Entraxe inférieur à 7 diamètres et / ou distance au bord, $\alpha_{2}=1$				Entraxe supérieur à 7 diamètres et pas de distance au bord, $\alpha_{2}=0,7$			
[mm]	[mm]	[mm]	[kN]	[mI]		[mm]	[kN]	[mI]	
8	12 (10)	130	7,54	10	(4)	130	10,77	10	(4)
		250	14,46	19	(8)	175	14,46	13	(6)
		330	19,09	25		231	19,09	17	(8)
		434	25,13	33		304	25,13	23	
10	14	163	11,78	15	(7)	163	16,83	15	(7)
		250	18,06	23	(10)	175	18,06	16	(7)
		355	25,64	32		249	25,64	22	(10)
		450	32,50	41		315	32,50	29	
		544	39,27	49		381	39,27	34	
12	16 (14)	196	16,97	21	(10)	196	24,24	21	(10)
		250	21,66	26	(12)	261	32,31	28	
		425	36,82	45		298	36,82	31	
		540	46,78	57		378	46,78	40	
		653	56,55	69		457	56,55	48	
14	18	228	23,09	28		228	32,99	28	
		360	36,43	43		252	36,43	30	
		495	50,09	60		347	50,09	42	
		630	63,76	76		441	63,76	53	
		761	76,97	92		532	76,97	64	
16	20	261	30,16	35		261	43,08	35	
		415	47,96	56		291	47,96	39	
		565	65,30	77		396	65,30	54	
		715	82,64	97		501	82,64	68	
		870	100,53	118		609	100,53	83	
20	25	326	47,12	69		326	67,32	69	
		495	71,50	105		347	71,50	73	
		665	96,05	141		466	96,05	99	
		835	120,61	177		585	120,61	124	
		1000	144,44	212		761	157,08	161	
25	32	408	73,63	153		408	105,19	153	
		555	100,28	209		543	140,25	204	
		705	127,39	265		679	175,31	255	
		855	154,49	322		815	210,38	306	
		1000	180,69	376		951	245,44	358	
32	40	522	120,64	283		522	172,34	283	
		640	147,94	347		641	211,81	348	
		760	175,67	413		761	251,28	413	
		880	203,41	478		880	290,74	478	
		1000	231,15	543		1000	330,21	543	

NOTE : Le volume de résine théorique nécessaire est calculé avec 20% de pertes. Pour les petits diamètres (10,12 et 14), les valeurs entre parenthèses correspondent au diamètre minimum de perçage dès lors que la longueur de scellement est inférieure à 250 mm .

Tableau précalculé en sismique selon DTA pour scellement de barres d'armatures
Conditions : Résine HIT-HY 2006A - Barres B500B
BÉTON C25/30 À C50/60 - BONNES CONDITIONS
Forage marteau perforateur
Connexion de poutre / dalle sur deux appuis

[mm]	[mm]	[mm]	[kN]	[ml]		[mm]	[kN]	[mI]	
		111	7,54	8	(4)	111	10,77	8	(4)
8	12	195	13,24	15	(7)	137	13,24	10	(5)
8		250	16,98	19	(8)	175	16,98	13	(6)
		370	25,13	28		259	25,13	20	
		139	11,78	13	(6)	139	16,83	13	(6)
		250	21,20	23	(10)	175	21,20	16	(7)
10	14 (12)	300	25,43	27		210	25,43	19	(9)
		380	32,22	34		266	32,22	24	
		463	39,27	42		324	39,27	29	
		167	16,97	18	(8)	167	24,24	18	(8)
		250	25,43	26	(12)	222	32,31	23	(11)
12	16 (14)	360	36,61	38		252	36,61	27	
		455	46,27	48		319	46,27	34	
		556	56,55	59		389	56,55	41	
		194	23,09	23		194	32,99	23	
		310	36,83	37		217	36,83	26	
14	18	425	50,49	51		298	50,49	36	
		540	64,15	65		378	64,15	46	
		648	76,97	78		454	76,97	55	
		222	30,16	30		222	43,08	30	
		350	47,49	48		245	47,49	33	
16	20	480	65,12	65		336	65,12	46	
		610	82,76	83		427	82,76	58	
		741	100,53	101		519	100,53	70	
		278	47,12	59		278	67,32	59	
		440	74,61	93		308	74,61	65	
20	25	600	101,74	127		420	101,74	89	
		760	128,87	161		532	128,87	113	
		926	157,08	196		648	157,08	138	
		347	73,63	131		347	105,19	131	
		510	108,18	192		463	140,25	174	
25	32	675	143,18	254		579	175,31	218	
		840	178,17	316		694	210,38	261	
		1000	212,11	376		810	245,44	305	
		445	120,64	241		445	172,34	241	
		585	158,74	318		583	226,16	317	
32	40	725	196,73	394		722	279,99	392	
		865	234,72	470		861	333,82	467	
		1000	271,35	543		1000	387,64	543	

[^6] correspondent au diamètre minimum de perçage dès lors que la longueur de scellement est inférieure à 250 mm .

Mèche creuse homologuée Nettoyage non nécessaire

DIMENSIONNEMENT SELON LA MÉTHODE HIT

 AVEC RÉSINE HILTI HIT-HY 200-A
Domaine d'application

Détermination des longueurs de scellement d'armatures HA B500B avec la résine HIT-HY 200-A pour les applications générales, pour des enrobages et espacements de barres importants, tenant compte de la contrainte d'adhérence de la résine HIT-HY 200-A.

Ce tableau précalculé ne concerne que les connexions de poutre / voile sur deux appuis, sans conditions de bord.

Ces longueurs sont des longueurs minimum si ce tableau est utilisé seul.
L'utilisation du logiciel Hilti PROFIS Rebar permet d'obtenir des valeurs plus précises en fonction de l'application réelle.

Méthode de calcul

La longueur d'ancrage est calculée avec la formule:
$I_{b d}=\frac{\varnothing \times \sigma_{s d}}{4 \times f_{b d}{ }^{\prime}}$
où
$\sigma_{\text {sd }}$ est la limite conventionelle d'élasticité du fer divisée par le coefficient sécurité de 1,15 , soit $435 \mathrm{~N} / \mathrm{mm}^{2}(=500 / 1,15)$
f_{bd} ' est l'adhérence réelle de la résine HIT-HY 200-A prendre les charges apportées par les fers à béton et comporte les dispositions éventuelles à leur transfert. L'entreprise de pose se doit de respecter la conformité en terme d'implantation telle que définie par les plans d'exécution. Hilti décline toute responsabilité en cas de dommages dus au non respect du mode d'emploi, à un sous-dimensionnement de la liaison par le client, à l'insuffisance de la capacité de charge du materriau de base, à des erreurs d'application ainsi qu'à tout autre élément inconnu du fabricant. * Les essais sur sites peuvent être réalisés par Hilti.

Ø Armature [mm]	\varnothing Trou [mm]	Charge traction NRd [kN]	Entraxe [mm]	Longueur d'ancrage $\mathrm{I}_{\mathrm{bd}}(\mathrm{mm})$						
				C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8	$\begin{gathered} 12 \\ \left(10^{\star}\right) \end{gathered}$	21,87	64	239	204	183	162	149	137	128
			80	200	171	154	135	125	115	109
			120	143	121	109	109	109	109	109
			≥ 160	111	109	109	109	109	109	109
10	$\begin{gathered} 14 \\ \left(12^{\star}\right) \end{gathered}$	34,13	80	299	255	229	202	186	172	160
			100	250	213	192	169	163	163	163
			150	250	213	192	169	163	163	163
			≥ 200	163	163	163	163	163	163	163
12	$\begin{gathered} 16 \\ \left(14^{\star}\right) \end{gathered}$	49,13	96	359	305	275	243	223	206	192
			120	300	256	230	203	187	173	163
			180	214	182	164	163	163	163	163
			≥ 240	166	163	163	163	163	163	163
14	18	66,96	112	418	356	321	283	260	241	224
			140	351	299	269	237	218	202	190
			210	249	212	191	190	190	190	190
			≥ 280	194	190	190	190	190	190	190
16	20	87,39	128	478	407	367	323	297	275	256
			160	401	341	307	271	249	230	217
			240	285	243	219	217	217	217	217
			≥ 320	221	217	217	217	217	217	217
20	25	136,52	160	598	509	458	404	371	344	320
			200	501	427	384	339	311	288	272
			300	356	304	273	272	272	272	272
			≥ 400	277	272	272	272	272	272	272
25	32	213,48	200	747	636	573	505	464	430	400
			250	626	533	480	423	389	360	340
			375	445	379	341	340	340	340	340
			≥ 500	346	340	340	340	340	340	340
32	40	349,57	256	956	815	733	647	594	550	511
			320	801	682	614	542	498	461	435
			480	570	486	437	435	435	435	435
			≥ 640	443	435	435	435	435	435	435

TENUE AU FEU DU HIT-HY 200-A

Connexion de dalle sur voile vertical - Domaine d'application

Abaque de dimensionnement au feu de la résistance par adhérence d'armature HA pour une connexion de poutre sur voile en béton armé
Scellement par résine Hilti HIT-HY 200-A.
Valeurs selon rapport CSTB 26033756.
Mode d'emploi des abaques
Détermination de la longueur d'ancrage L_{s} de fers d'armature HA B500B
en situation d'incendie dans le cas d'une liaison poutre-voile. Valeurs données pour des tenues au feu de 30 minutes à 4 heures selon courbe ISO 834 .

Résistance de calcul au feu selon Eurocode 2 pour une tenue au feu de 30 à 240 minutes.

\varnothing Armature	\varnothing Trou	Force de traction maximale appliquée dans l'acier en situation d'incendie	Longueur d'ancrage dans la paroi	Tenue au feu en minutes					
				30	60	90	120	180	240
(mm)	(mm)	$\mathrm{F}_{\mathrm{Sd}, \mathrm{f} \mathrm{i}}(\mathrm{kN})$	$\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$	$\mathrm{F}_{\mathrm{Rd}, \mathrm{adh}, \mathrm{i}}(\mathrm{kN})$					
8	10	16,2	Enrobage minimum (mm) *	15	29	40	50	68	82
			80	5,8	2,4	1,4	1,2	1,0	1,0
			100	9,9	4,8	2,7	2,1	1,6	1,6
			130	16,2	10,3	6,5	4,9	3,3	2,8
			160	-	16,2	12,1	9,5	6,4	4,9
			180	-	-	16,2	13,4	9,4	7,1
			195	-	-	-	16,2	12,0	9,1
			220	-	-	-	-	16,2	13,2
			240						16,2
10	12	25,3	Enrobage minimum (mm) *	15	29	40	50	68	82
			100	11,8	5,6	3,2	2,6	2,0	1,9
			150	25,3	17,4	11,8	9,2	6,1	5,0
			180	-	25,3	19,6	16,0	11,0	8,6
			200	-	-	25,3	21,3	15,3	12,0
			215	-	-	-	25,3	18,9	15,1
			240	-	-	-	-	25,3	20,8
			260	-	-	-	-	-	25,3
12	16	36,4	Enrobage minimum (mm) *	15	29	40	50	68	82
			120	20,5	10,7	6,5	5,0	3,7	3,5
			165	36,4	24,6	17,5	13,4	9,7	8,1
			200	-	36,4	28,9	23,3	17,8	14,7
			225	-	-	36,4	31,4	25,0	20,9
			240	-	-	-	36,4	29,7	25,1
			260	-	-	-	-	36,4	31,1
			280	-	-	-	-	-	36,4

\varnothing Armature	\varnothing Trou	Force de traction maximale appliquée dans l'acier en situation d'incendie	Longueur d'ancrage dans la paroi	Tenue au feu en minutes					
				30	60	90	120	180	240
(mm)	(mm)	$\mathrm{F}_{\mathrm{sd}, \mathrm{fi}}(\mathrm{kN})$	$\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$	$\mathrm{F}_{\mathrm{Rd}, \mathrm{adh}, \mathrm{fi}}(\mathrm{kN})$					
14	18	49,6	Enrobage minimum (mm) *	15	29	40	50	68	82
			140	32,5	18,4	12,0	9,3	6,3	5,9
			160	41,1	25,7	18,1	14,3	9,5	8,5
			180	49,6	33,7	25,1	20,5	14,0	12,0
			220	-	49,6	40,9	35,1	26,0	22,2
			245	-	-	49,6	45,3	35,0	30,2
			260	-	-	-	49,6	40,7	35,5
			285	-	-	-	-	49,6	44,8
			300	-	-	-	-	-	49,6
16	20	64,8	Enrobage minimum (mm) *	16	29	40	50	68	82
			160	47,4	28,1	19,4	15,7	11,0	9,4
			180	57,5	37,0	27,1	22,4	16,0	13,2
			195	64,8	44,1	33,5	28,1	20,6	16,9
			240	-	64,8	54,3	47,7	37,5	31,4
			265	-	-	64,8	59,5	48,4	41,2
			280	-	-	-	64,8	55,2	47,5
			305	-	-	-	-	64,8	58,6
			320	-	-	-	-	-	64,8
20	25	101,2	Enrobage minimum (mm) *	20	29	40	50	68	82
			200	86,0	54,5	41,4	34,7	25,7	21,7
			225	101,2	69,4	55,1	47,5	36,4	30,9
			280	-	101,2	88,0	79,0	$64,9$	56,6
			305	-	-	101,2	94,3	79,2	70,0
			320	-	-	-	101,2	88,2	78,4
			345	-	-	-	-	101,2	$\begin{gathered} 93,0 \\ 101,2 \end{gathered}$
			360	-	-	-	-	-	
25	30	158,1	Enrobage minimum (mm) *	25	29	40	50	68	82
			250	156,0	107,0	81,6	72,2	57,4	49,8
			255	158,1	110,9	85,2	75,7	60,5	52,6
			315	-		$130,7$	119,9	101,3	90,4
			350	-		158,1	147,0	127,3	115,2
			365	-	-	-	158,1	138,8	126,3
			390	-	-	-	-	158,1	145,0
			410	-	-	-	-	-	158,1
			Enrobage minimum (mm) *	25	29	40	50	68	82
32	40	259,0	320	259,0	218,1	172,1	148,1	126,5	114,8
			360	-	259,0	212,0	187,0	163,6	150,3
			380	-	-	232,3	206,9	182,9	169,0
			410	-	-	259,0	237,0	212,5	197,7
			435	-	-	-	259,0	237,5	222,2
			460	-	-	-	-	259,0	247,0
			475	-	-	-	-	-	259,0

Remarque: Les valeurs intermédiaires peuvent être obtenues par interpolation linéaire.

SCELLEMENT DE POUTRE SUR VOILE VERTICAL - DOMAINE D'APPLICATION

Abaque de dimensionnement au feu de la résistance par adhérence d'armature HA pour connexion de poutre sur voile en béton armé.
Scellement par résine Hilti HIT-HY 200-A
Valeurs selon étude CSTB 26033756.

Mode d'emploi des abaques

Détermination de la longueur de scellement L_{s} d'armature HA B500B en situation d'incendie dans le cas d'une liaison poutre-voile (voir ci contre).

Valeurs données pour des tenues au feu de 30 minutes à 4 heures selon courbe ISO 834. Indication de l'enrobage (distance entre béton et acier) mini horizontal et vertical (armatures de coin) à respecter.

Par ailleurs, ces abaques sont valables pour un nombre maximum d'armature par lit en fonction des dimensions des poutres comme indiqué dans les tableaux précédant les abaques.

Les espacements verticaux et horizontaux "a" entre fers (au nu des aciers) sont déterminés par la formule :
$\mathrm{a}=\max (3 \times$ diamètre de forage ; 60) [Dimensions en mm]
Cas d'une poutre de largeur 20 cm .

\varnothing Armature (mm)	Forage (mm)	Effort de traction max en situation d'incendie (kN)	Poutre de largeur 20 cm	Durée de stabilité (minutes)					
				30	60	90	120	180	240
8	10	16,2	Enrobage minimum (mm)	30	55	80	-	-	-
			Longueur d'ancrage $\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$	121	143	160	-	-	-
10	12	25,3	Enrobage minimum en mm	30	55	80	-	-	-
			Longueur d'ancrage $\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$	137	160	178	-	-	-
12	16	36,4	Enrobage minimum en mm	30	55	80	-	-	-
			Longueur d'ancrage $\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$	153	177	195	-	-	-
14	18	49,6	Enrobage minimum en mm	30	55	80	-	-	-
			Longueur d'ancrage $\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$	168	193	212	-	-	-
16	20	64,8	Enrobage minimum en mm	30	55	80	-	-	-
			Longueur d'ancrage $L_{\text {s }}(\mathrm{mm})$	184	208	228	-	-	-
20	25	101,2	Enrobage minimum en mm	30	55	80	-	-	-
			Longueur d'ancrage $\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$	215	240	260	-	-	-
25	30	158,1	Enrobage minimum en mm	30	55	80	-	-	-
			Longueur d'ancrage $\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$	254	279	299	-	-	-
32	40	259,0	Enrobage minimum en mm	30	55	80			
			Longueur d'ancrage $\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$	320	333	353			

SCELLEMENT DE POUTRE SUR VOILE VERTICAL - DOMAINE D'APPLICATION

Abaque de dimensionnement au feu de la résistance par adhérence d'armature HA pour connexion de poutre sur voile en béton armé.
Scellement par résine Hilti HIT-HY 200-A
Valeurs selon étude CSTB 26033756.

Mode d'emploi des abaques

Détermination de la longueur de scellement L_{s} d'armature HA B500B en situation d'incendie dans le cas d'une liaison poutre-voile (voir ci contre).

Valeurs données pour des tenues au feu de 30 minutes à 4 heures selon courbe ISO 834. Indication de l'enrobage (distance entre béton et acier) mini horizontal et vertical (armatures de coin) à respecter.

Par ailleurs, ces abaques sont valables pour un nombre maximum d'armature par lit en fonction des dimensions des poutres comme indiqué dans les tableaux précédant les abaques.

Les espacements verticaux et horizontaux "a" entre fers (au nu des aciers) sont déterminés par la formule :
$\mathrm{a}=\max (3 \mathrm{x}$ diamètre de forage ; 60) [Dimensions en mm]

Cas d'une poutre de largeur 30 cm .

Poutre de largeur $\mathbf{3 0} \mathbf{~ c m}$	Durée de stabilité I Nombre d'armatures par lit			
	$\mathbf{3 0} \mathbf{~ m i n}$	$\mathbf{6 0} \mathbf{~ m i n}$	$\mathbf{9 0} \mathbf{~ m i n}$	$\mathbf{1 2 0} \mathbf{~ m i n}$
Fer de 8	4	3	3	2
Fer de 10	4	3	3	2
Fer de 12	4	3	3	2
Fer de 14	4	3	2	2
Fer de 16	3	3	2	2
Fer de 20	3	2	2	2
Fer de 25	2	2	2	1
Fer de 32	2	2	1	1

Armature (mm)		Effort de traction max en situation d'incendie (kN)	Poutre de largeur 30 cm	Durée de stabilité (minutes)					
				30	60	90	120	180	240
8	10	16,2	Enrobage minimum (mm)	30	55	80	85	-	
			Longueur d'ancrage $\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$	121	141	152	174	-	-
10	12	25,3	Enrobage minimum en mm	30	55	80	85	-	-
			Longueur d'ancrage $\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$	137	158	170	192	-	-
12	16	36,4	Enrobage minimum en mm	30	55	80	85	-	-
			Longueur d'ancrage $\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$	153	175	187	210	-	-
14	18	49,6	Enrobage minimum en mm	30	55	80	85	-	-
			Longueur d'ancrage $\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$	168	191	204	227	-	-
16	20	64,8	Enrobage minimum en mm	30	55	80	85	-	-
			Longueur d'ancrage $\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$	184	207	220	243	-	-
20	25	101,2	Enrobage minimum en mm	30	55	80	85	-	-
			Longueur d'ancrage $\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$	215	238	252	276	-	-
25	30	158,1	Enrobage minimum en mm	30	55	80	85	-	-
			Longueur d'ancrage $\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$	254	277	291	315	-	-
32	40	259,0	Enrobage minimum en mm	30	55	80	85		
			Longueur d'ancrage $\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$	320	332	345	370		

SCELLEMENT DE POUTRE SUR VOILE VERTICAL - DOMAINE D'APPLICATION

Abaque de dimensionnement au feu de la résistance par adhérence d'armature HA pour une connexion poutre sur voile en béton armé.
Scellement par résine Hilti HIT-HY 200-A
Valeurs selon étude CSTB 26033756.

Mode d'emploi des abaques

Détermination de la longueur de scellement L_{s} d'armature HA B500B
en situation d'incendie dans le cas d'une liaison poutre-voile (voir ci contre).
Valeurs données pour des tenues au feu de 30 minutes à 4 heures selon courbe ISO 834. Indication de l'enrobage (distance entre béton et acier) mini horizontal et vertical (armatures de coin) à respecter.

Par ailleurs, ces abaques sont valables pour un nombre maximum d'armatures par lit en fonction des dimensions des poutres comme indiqué dans les tableaux précédant les abaques.

Les espacements verticaux et horizontaux "a" entre armature (au nu des aciers) sont déterminés par la formule :
$\mathrm{a}=\max (3 \mathrm{x}$ diamètre de forage ; 60) [Dimensions en mm]

Cas d'une poutre de largeur 40 cm et plus.

	Durée de stabilité I Nombre d'armatures par lit															
	Poutre de largeur 40 cm							Poutre de largeur 100 cm								
	30		60	90	120	180	240	30	60	90	120	180	240			
Fer de 8	5		5	4	4	3	2	14	14	13	13	12	11			
Fer de 10	5		5	4	4	3	2	14	13	13	12	12	11			
Fer de 12	5		4	4	4	3	2	13	13	12	12	12	10			
Fer de 14	5		4	4	3	3	2	13	12	12	12	12	10			
Fer de 16	5		4	4	3	3	2	13	12	12	11	11	10			
Fer de 20	4		3	3	3	2	2	10	10	9	9	9	8			
Fer de 25	3		3	3	2	2	1	9	8	8	8	7	7			
Fer de 32	3		2	2	2	1	1	7	6	6	6	5	5			
\varnothing Armature	\varnothing Forage	Effort de traction max en situation d'incendie (kN)			Poutre de largeur 40 cm			Durée de stabilité (minutes)								
(mm)	(mm)				30	60	90	120	180	240						
8	10	16,2						Enrobage minimum (mm)			28 122	52 143	70 159	85 172	110 193	136 209
10	12	25,3			Enrobage minimum en mm Longueur d'ancrage $L_{s}(\mathrm{~mm})$			28 138	52 160	70 177	85 190	110 213	136 230			
12	16	36,4			Enrobage minimum en mm Longueur d'ancrage $\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$			28 154	52 177	70 194	85 208	110 232	136 250			
14	18	49,6			Enrobage minimum en mm Longueur d'ancrage $\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$			28 169	52 193	70 210	85 225	110 250	136 269			
16	20	64,8			Enrobage minimum en mm Longueur d'ancrage $L_{s}(m m)$			28 185	52 209	70 227	85 241	110	136 287			
20	25	101,2			Enrobage minimum en mm Longueur d'ancrage $\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$			28 216	52 240	70 258	85 274	110 300	136 321			
25	30	158,1			Enrobage minimum en mm Longueur d'ancrage $L_{s}(\mathrm{~mm})$			28 255	52 279	70 298	85 313	110 340	136 362			
32	40	259,0			Enrobage minimum en mm Longueur d'ancrage $\mathrm{L}_{\mathrm{s}}(\mathrm{mm})$			28 320	52 333	70 352	85 368	110 395	136 418			

[^0]: NOTE : Le volume de résine théorique nécessaire est calculé avec 20% de pertes. Pour les petits diamètres (10, 12 et 14), les valeurs entre parenthèses correspondent au diamètre minimum de perçage dès lors que la longueur de scellement est inférieure à 250 mm .

[^1]: NOTE : Le volume de résine théorique nécessaire est calculé avec 20% de pertes. Pour les petits diamètres (10, 12 et 14), les valeurs entre parenthèses correspondent au diamètre minimum de perçage dès lors que la longueur de scellement est inférieure à 250 mm .

[^2]: NOTE : Le volume de résine théorique nécessaire est calculé avec 20% de pertes. Pour les petits diamètres (10,12 et 14), les valeurs entre parenthèses correspondent au diamètre minimum de perçage dès lors que la longueur de scellement est inférieure à 250 mm .

[^3]: NOTE : Le volume de résine théorique nécessaire est calculé avec 20% de pertes. Pour les petits diamètres (10, 12 et 14), les valeurs entre parenthèses correspondent au diamètre minimum de perçage dès lors que la longueur de scellement est inférieure à 250 mm .

[^4]: NOTE : Le volume de résine théorique nécessaire est calculé avec 20% de pertes. Pour les petits diamètres (10,12 et 14), les valeurs entre parenthèses

[^5]: NOTE : Le volume de résine théorique nécessaire est calculé avec 20% de pertes. Pour les petits diamètres (10, 12 et 14), les valeurs entre parenthèses correspondent au diamètre minimum de perçage dès lors que la longueur de scellement est inférieure à 250 mm .

[^6]: NOTE : Le volume de résine théorique nécessaire est calculé avec 20% de pertes. Pour les petits diamètres (10, 12 et 14), les valeurs entre parenthèses

