

X-HVB DATA SHEET

Shear connector

X-HVB Shear connector

Product data

Dimensions

X-HVB 110

X-HVB 95

X-HVB 80

X-HVB 40

X-HVB 50

X-ENP-21 HVB

Material specifications

X-HVB	
Carbon steel:	R _m = 295–350 N/mm ²
Zinc coating:	≥ 3 µm
X-ENP-21 HVB	
Carbon steel shank:	HRC58
Zinc coating:	8–16 µm

Recommended fastening tools			
Tool	DX 76	DX 76 PTR	
Fastener guide	X-76-F-HVB	X-76-F-HVB-PTR	
Piston	X-76-P-HVB	X-76-P-HVB-PTR	
Cartridges	6.8/18M black, red		
	(for details see application		
	limit X-ENP-21 HVB)		

 For more details, please refer to the chapter Accessories and consumables compatibility in the Direct Fastening Technology Manual (DFTM).

Approvals and design guidelines

ETA-15/0876, design according to Eurocode 4 (EN 1994-1-1, EN 1994-1-2) and Eurocode 8 (EN 1998-1)

MLIT / BCJ (Japan)

• With regard to composite design according to AISC (American Institute of Steel Construction), please refer to the technical literature of Hilti North America (Product Technical Guide).

Applications

Examples

Typical application of X-HVB shear connector with steel deck, e.g. new construction.

Typical application of X-HVB shear connector with jack arch system (without steel deck), e.g. rehabilitation project. "Duckwalk"

Characteristic and design resistance (ETA-15/0876) in composite beams with solid slabs

Shear Connector	Characteristic Resistance P _{Rk} [kN]	Design Resistance P _{Rd} [kN]	Minimum base material thickness [mm]	X-HVB positioning	Ductility assessment
X-HVB 40	29	23	6	"duckwalk"	
X-HVB 50	29	23	6	duckwaik	
X-HVB 80	32.5	26		Ducti	Ductile
X-HVB 95	35	28		according to	
X-HVB 110	35	28	8*)	parallel with beam	EN 1994-1-1
X-HVB 125	37.5	30	Joann		
X-HVB 140	37.5	30			

*) Reduction to 6 mm possible, with regards to required reduction of design resistance see annex C3 of ETA-15/0876.

Conditions:

- Normal weight concrete C20/25 to C50/60
- Light weight concrete LC20/22 to LC50/55 with a minimum density ρ = 1750 kg/m³

Design resistance in composite beams with decking ribs transverse to beam axis

X-HVB positioning	Design Resistance P _{Rd,t} [kN]	Ductility assessment
X-HVB positioning longitudinal with the beam	$\begin{split} P_{Rd,t,l} &= k_{t,l} \cdot P_{Rd} \\ k_{t,l} &= \frac{0.66}{\sqrt{n_r}} \cdot \frac{b_0}{h_p} \cdot \left(\frac{h_{SC}}{h_p} - 1\right) \leq 1.0 \end{split}$	Ductile according to
X-HVB positioning transverse with the beam	$\begin{split} P_{Rd,t,t} &= 0.89 \cdot k_{t,t} \cdot P_{Rd} \\ k_{t,t} &= \frac{1.18}{\sqrt{n_r}} \cdot \frac{b_0}{h_p} \cdot \left(\frac{h_{SC}}{h_p} - 1\right) \leq 1.0 \end{split}$	EN 1994-1-1

Conditions:

• Applicable for X-HVB 80, X-HVB 95, X-HVB 110, X-HVB 125, X-HVB 140

• n_r corresponds to the number of X-HVBs per rib ($n_r \le 3$)

Design resistance in composite beams with decking ribs parallel to beam axis

X-HVB positioning	Design Resistance P _{Rd,t} [kN]	Ductility assessment
≥20 mm ≥50 mm ≥50 mm	$P_{Rd,l} = k_l \cdot P_{Rd}$ $k_l = 0.6 \cdot \frac{b_0}{h_p} \cdot \left(\frac{h_{SC}}{h_p} - 1\right) \le 1.0$	Ductile according to EN 1994-1-1

Conditions:

• Applicable for X-HVB 80, X-HVB 95, X-HVB 110, X-HVB 125, X-HVB 140

• X-HVB are to be positioned parallel with beam

Decking geometric parameters

X-HVB

Design information

Connector placement along the beam

The X-HVB is a ductile shear connector according to EN 1994-1-1, section 6.6, and may be uniformly distributed between critical sections. These critical sections, where large changes in shear flow occur, may be at supporting points, points of application of point loads or areas with extreme bending moments.

Partial shear connection

Strength:

The minimum connection depends on the design code used:

In EN 1994-1-1 design, N/N $_{\rm f}$ must be at least 0.4. This increases depending on span length and decking geometry.

Deflection control only

If the shear connection is needed for deflection control only, there is no minimum degree of connection. However, minimum allowable connector spacing applies and the steel beam must have enough strength to carry the self-weight and all imposed loads.

Further specific design topics covered in the ETA-15/0876

- Coverage of seismic loading according to Eurocode 8 (EN 1998-1-1)
- Design resistance in case of use of old steel with an ultimate strength greater than 300 N/mm² and less than 360 N/mm²
- Effect of reduced base material thickness less than 8 mm for X-HVB 80 to X-HVB 140
- · Design of end anchorage of composite slabs
- · Design in case of a fire

Application recommendation

Thickness of base material

For beams with composite decking:

minimum thickness $t_{\parallel} = 8$ mm.

For beams with solid concrete slabs: minimum thickness $t_{II} = 6$ mm, especially relevant in renovation projects in order to take the thin flange thickness of small I-sections (e.g. IAO 100, I 100, IPE 100) into account.

Thickness of fastened material

Maximum total thickness of fixed sheeting t_{fix}:

- 2.0 mm for X-HVB 80, X-HVB 95 and X-HVB 110
- 1.5 mm for X-HVB 125 and X-HVB 140

Positioning of X-HVB connectors in solid concrete slabs

X-HVB are to be positioned parallel with beam

... •• ••

Spacing and positioning

Positioning of X-HVB connectors with composite deck (deck positioned transverse to; and X-HVB positioned parallel with beam axis)

- $a_t \ge 50$ mm for compact profiled decking with $b_0/h_p \ge 1.8$
- $a_t \ge 100 \text{ mm}$ for other decking

1 row of connector - Minimum rib width and spacing to decking

Multiple rows of connector - Minimum rib width

Ŧ -

Positioning of X-HVB connectors with composite deck (deck and X-HVB positioned transverse to beam axis)

- 2 rows:
- a_t ≥ 100 mm for all types decking

3 rows:

- $a_t \ge 50$ mm for compact profiled decking with $b_0/h_p \ge 1.8$
- a_t ≥ 100 mm for other decking

Positioning - 1 row of connectors

Without rib stiffener ≥40 mm

With rib stiffener (X-HVB in contact with rib stiffener) ≥40 mm

Preferred position in compression zone of concrete rib

Positioning - 2 and 3 rows of connectors

Minimum width of deck rib

OR equi-spacing

Positioning of X-HVB connectors with composite deck (deck parallel with beam axis)

X-HVB are to be positioned parallel with beam

Spacing and positioning

• If a centric positioning within the concrete rib is not possible due to the shape of the composite decking, the decking needs to be split.

"Duckwalk" positioning of X-HVB 40 and 50 in combination with thin solid slabs for renovation construction

- Minimum section width = 40 mm (e.g. old section IAO 100)
- Minimum center distance of steel sections = 400 mm

Application limits

Application limits are valid only if correct cartridge and power setting are used!

Application limits X-ENP-21 HVB

> 20 19 18 17 Base material thickness [mm] 16 15 Black 4 Black 4 14 13 12 11 10 Black 3 9 Red 4 Black 2 8 7 Red 1 Red 1 6 S 235 S 355 Steel grade

In thermo-mechanically rolled construction steel, e.g. S 355M per EN 10025-4 the application limit is reduced by 50 N/mm² Fine adjustment by carrying out installation tests on site

Minimum section covered: IPE 100

05/2021

• Minimum base material thickness for beams with composite decking: 8 mm

www.hilti.group

Cartridge preselection and power setting

X-HVB

Fastener program

Minimum slab thickness

	Minimum slab thickness h [mm]		
X-HVB	Without effect of corrosion	With effect of corrosion	
40	50	60	
50	60	70	
80	80	100	
95	95	115	
110	110	130	
125	125	145	
140	140 160		

Maximum decking height hp, dependent on decking geometry

	Maximum height of composite decking hp [mm]			
X-HVB	$\frac{b_o}{h_p} \ge 1.8$	$1.0 < \frac{b_o}{h_p} < 1.8$	$\frac{b_o}{h_p} \le 1.0 \text{ x})$	
80	45	45	30	
95	60	57	45	
110	75	66	60	
125	80	75	73	
140	80	80	80	

 $^{x)} b_0 / h_p \ge 1.0$ for composite decking perpendicular to beam combined with X-HVB orientation parallel with beam

Quality assurance

Fastening inspection

 $8.2 \text{ mm} \le h_{\text{NVS}} \le 9.8 \text{ mm}$

Clearly visible piston mark on top washer