ENVIRONMENTAL PRODUCT DECLARATION

as per *ISO 14025* and *EN 15804+A2*

Owner of the Declaration	Hilti Aktiengesellschaft
Publisher	Institut Bauen und Umwelt e.V. (IBU)
Programme holder	Institut Bauen und Umwelt e.V. (IBU)
Declaration number	EPD-HIL-20230212-IBC2-EN
Issue date	01.09.2023
Valid to	31.08.2028

MT- System (Indoor) HILTI AG

www.ibu-epd.com | https://epd-online.com

General Information

Programme holder

IBU – Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany

Declaration number

EPD-HIL-20230212-IBC2-EN

This declaration is based on the product category rules:

Connection, assembly and installation systems, 01.08.2021 (PCR checked and approved by the SVR)

Issue date

01.09.2023

Valid to

31.08.2028

Man Peter

Dipl.-Ing. Hans Peters (Chairman of Institut Bauen und Umwelt e.V.)

Hilti Aktiengesellschaft Feldkircher Strasse 100 9494 Schaan Liechtenstein Declared product / declared unit I.-Channel MT-40D / 1kg Scope: This document relates to the I.-Channel MT-40D ('MT-40D") as a representative product for the MT Indoor profile portfolio. The MT Indoor profile portfolio is a set of installation channels with 5 types of wall thickness – 1.2mm, 1.5mm, 1.75mm, 2mm and 2.75mm. Then the products are distinguished into size classes by shape and load performance. Each of these size classes are produced in 3 different lengths to accommodate intended use, which are 2 meters, 3 meters and 6 meters. The declared product for this EPD is MT-40D, with thickness of 2mm, because it is has the highest weight in the MT Indoor profile portfolio and therefore represents the worst case. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

MT- System (Indoor) Owner of the declaration

The EPD was created according to the specifications of EN 15804+A2. In the following, the standard will be simplified as EN 15804.

Verification

The standard EN 15804 serves as the core PCR	
Independent verification of the declaration and data according to ISO 14025:2011	

internally

X externally

Pau

Florian Pronold (Managing Director Institut Bauen und Umwelt e.V.)

1. Albert

Mrs Kim Allbury, (Independent verifier)

2. Product

2.1 Product description/Product definition

The MT-40 D is designed as a metallic substructure system that is made of thin-walled steel in C shape with surface coating for the indoor environment. The open side of the profile interfaces with other assembly components to form a flexible modular support substructure that is fastened to concreate or steel frame structures. They are horizontal and vertical members at different lengths that interconnect to form either 2D or 3D structures to carry the weight and hold in place mechanical, electrical, and piping services.

For the placing of the product on the market in the European Union European Free Trade Association

EU/EFTA) (with the exception of Switzerland) *Regulation (EU) No. 305/2011 (CPR)* applies. The product needs a declaration of performance taking into consideration the following European Technical Approval *ETA-21/0414* assessed based on EAD 280016-00-0602 'Products for installation systems for supporting technical building equipment'. For the application and use the respective national provisions apply.

The individual channel items under this product family and represented by MT-40D are as listed below:

lmage	Designation	
PROFILES - threaded rod trapeze		
	MT-10	
	MT-15	
	MT-20	
1	МТ-40 Т	
	MT-40 T S	

	.
Image	Designation
PROFILES - strut / ope	n C-Channels
	MT-30
-	MT-30 S
1	MT-40
	MT-40 S
	MT-50
	MT-50 S
	MT-60
	MT-60 S

Image

Designation

Image

Designation

2.2 Application

The MT-40D is developed to be fixed on base materials like concrete and steel frame structures to support the mechanical, electrical, and piping services so that their loads are transferred to the super structure of the building or facility. The product is intended to be used under dry indoor conditions for support:

- Pipes for the transport of fluids and gas
- Technical building equipment in general
- Components of fixed fire-fighting systems
- Electrical cable layouts
- Ventilating system layouts and equipment
- Flooring
- Other instrumentation

The profile flanges are turned at the end which makes it possible to force-fit the channels to specific channel system fixtures. Recesses in the form of oblong holes and round holes allow the use of fasteners and fixtures.

2.3 Technical Data

The following data complies with the dimension drawing provided in the Annexe A3 of *ETA-21/0414*.

Constructional data

Name	Value	Unit
Thickness of material	2	mm
Height of profile	85	mm
Width of profile	42.5	mm
Length of profile	6000.0	mm

Performance data of the product in accordance with the declaration of performance with respect to its essential characteristics according to *ETA-21/0414* assessed based on *EAD 280016-00-0602* 'Products for installation systems for supporting technical building equipment'

2.4 Delivery status

The MT-40D is packaged in bundles of long goods, and each length types are bundled together with plastic straps then protected at the edges with wooden blocks. The declared MT-40D is packed in 25 piece-bundle of 6 meter lengths, constituting 150 meters per bundle in a delivery.

2.5 Base materials/Ancillary materials

Name	Value	Unit
Galvanized steel	100	%

The raw material used to produce the declared product MT-40D is galvanized steel according to the standard *EN 10346:2015*, weighing 2.039 kg per meter.

This product/article/at least one partial article contains substances listed in the *REACH SVHC candidate list* (date: 17.01.2023) exceeding 0.1 percentage by mass: NO.

This product/article/at least one partial article contains other carcinogenic, mutagenic, reprotoxic (CMR) substances in categories 1A or 1B which are not on the *candidate list*, exceeding 0.1 percentage by mass: NO.

Biocide products were added to this construction product or it has been treated with biocide products (this then concerns a treated product as defined by the (EU) *Ordinance on Biocide Products No. 528/2012*): NO.

2.6 Manufacture

The raw material for MT-40D is sourced from Linz, Austria and transported to Gresten, Austria via train. The profile is manufactured through cold-roll forming process of steel sheets which also includes cutting to designated lengths at the end of the line.

2.7 Environment and health during manufacturing

Hilti ensures that the suppliers implement a quality management system that meets the requirements of the *ISO 9001* or *ISO/TS 16949* standards or higher. Quality must be planned, ensured and documented using appropriate quality tools, e.g. Statistical process contro (SPC) or failure mode and effects analysis (FMEA). The production and quality control according to the product specifications and approval specifications of the MT profile and its system components are ensured by an in-house quality control by Hilti.

We expect the environmental management implemented by our suppliers to meet at least the *ISO14001* standard international regulations on forbidden substances.

The supplier for the MT-40D holds the following certifications:

- ISO 9001
- ISO 45001
- ISO 14001

2.8 Product processing/Installation

The MT-40D is supplied as a ready to install modular support system element provided with an Instruction for Use explaining the basic steps for installation. The MT-40D is either connected to a pre-positioned baseplate element that connects it to the building structure or is positioned directly to the building structure when delivered as a pre-assembled module. For fastening the connection point to the baseplate or other connection elements, a Hilti automated impact wrench tool called SIW 6AT-A22 may be used to ensure anchoring or bolting at precise fastening torques. No special environmental protection measures need to be taken while installing the MT profiles.

2.9 Packaging

The MT-40D is delivered packed and strapped in bundles as long goods. The product type can be 2 meters, 3 meters or 6

meters in lengths. Same length types are bundled together in plastic straps (PE) and delivered on wooden blocks that protect the ends of the bundles. Depending on the usage case and user request, the channel can be cut into various lengths as requested and bundled or preassembled in customized conditions.

Both materials cannot be re-used, but they can be recycled. The PE plastic straps can be collected per recycle waste collection process and can be recycled through thermal recycling method.

2.10 Condition of use

All supplied materials are protected in the installed condition against external influences and designed for the service life of the respective construction. No risks can arise to water, air and soil if the products are used as designated in an indoor dry environment.

2.11 Environment and health during use

When used as designated, there is no impact on the environment or health.

2.12 Reference service life

The MT-40D has an assumed service life of 50 years in accordance with the *BBSR* table 'Service lives of Components for life cycle assessment according to BNB'. The practical service life can however be considerably longer and will depend on the specific installation situation and the product exposure scenario. The main factors influencing the period of use involve weathering as well as mechanical loads.

2.13 Extraordinary effects

Fire

The MT-40D is assessed in accordance with the European Assessment Document *EAD 280016-00-0502* for the following performance in safety in case of fire (*BWR2*).

Fire protection

Name	Value
Reaction to fire	Class A1
Pull-through resistance of channel back holes under fire exposure	ETA 23/0105
Bending characteristics under fire exposure	ETA 23/0105

Water

The MT-40D is comprised of galvanized steel. There are no environmental risks attributable to the effects of water except the product's own corrosion impact.

Mechanical destruction

In the event of mechanical destruction of the MT-40D, the profile assembly has to be replaced with a new set for the intended functional performance.

2.14 Re-use phase

The MT-40D cannot be re-used as a component for a modular support system, but the material can be recycled. All components of the described product can be returned and recycled into the material cycle.

2.15 Disposal

The MT-40D is disassembled from a building in which it has been installed by a series of unfastening processes. The interfaces with assembly components and with concrete or steel structures which have been originally fastened with a bolt and nut mechanism are untightened and separated back into individual product parts without change or deformation of the product material. These are fed into the recycling process in accordance with the applicable disposal guidelines. The waste

code for the profiles in accordance with the *European Waste Index is 17 04 05 (iron and steel)*.

2.16 Further information

3. LCA: Calculation rules

3.1 Declared Unit

The declared product here is a mounting system from HILTI AG with the designation I. Channel MT-40D is a representative product of the MT Indoor portfolio. The declared unit refers to 1 kg of mounting system. The packaging, related to 1 kg of mounting rail, is additionally included in the calculation at 0.007 kg. The following table shows the data of the declared unit.

Declared unit and mass reference

Name	Value	Unit
Declared unit	1	kg
Declared unit	7850	kg/m ³
Mass reference	4,46	kg/m
conversion factor	4,46	

3.2 System boundary

Type of EPD: Cradle to factory gate with options. The following information modules are defined as system boundaries in this study:

Production stage (A1-A3):

- A1, raw material extraction,
- A2, transport to the manufacturer,
- A3, production.

End of life (C1- C4):

- C1, deconstruction/demolition,
- C2, transport,
- C3, waste treatment ,
- C4, disposal.

Reuse, recovery and recycling potential (D).

In order to accurately capture the indicators and environmental impacts of the declared unit, a total of 8 information modules are considered. The information modules A1 to A3 describe the material provision, the transport to the production site, as well as the production processes of the product itself.

The primary products are sourced from the European Union. The transport is carried out by lorry and train. The following flow charts illustrate the underlying production process.

Information module A1	Information module A2	Information module A3
Steel	Transport	Production
Austria	Train	Austria

Illustration 1: Information module A1 to A3 of product

Further information is available on the Hilti website: www.hilti.group

Illustration 2: Information module A1 to A3 of packaging

In the information modules C1 to C4, the deconstruction or demolition from the building, the transport to waste disposal, the waste treatment and disposal of the product are recorded. Furthermore, reuse, recovery and recycling potentials are reported in information module D.

3.3 Estimates and assumptions

A steel coil with zinc content was used for the MT-40D. The transport of the lubricant was not taken into account, as the mass fraction is small and the effect is estimated to be low.

3.4 Cut-off criteria

The transport for the lubricant was not taken into account as the mass fraction is small. The lubricant itself was taken into account in the production for transparency of production. The cut-off criterion according to EN 15804+A2 is otherwise not applied. All energy and mass inputs were taken into account.

3.5 Background data

The background data referred to in this study comes from *Sphera's LCA for Experts database*.

3.6 Data quality

For the preparation of the LCA, specific data from the Gersten plant in Austria of HILTI AG from the year 2022 were collected. The background data from the *LCA for Experts database* is from 2023 and therefore highly relevant. The data quality is rated as adequate.

3.7 Period under review

The input and output flows used in this calculation come from the annual average consumption from the year 2022.

3.8 Geographic Representativeness

Land or region, in which the declared product system is manufactured, used or handled at the end of the product's lifespan: Global

3.9 Allocation

The I.Channel MT-40D assembly system as a representative product of the MT Indoor portfolio is produced in Gresten, Austria. The data for input and output flows are taken from the year 2022, which corresponds to the annual average. The input and output flows used in this calculation were measured directly by the manufacturer for this production process and are shown in the following table. In order to calculate the net flows, the mass that is produced as production waste and used as external steel scrap is subtracted from the total mass of secondary material.

3.10 Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to *EN 15804* and the building context, respectively the product-specific characteristics of performance, are taken into account. The database referred to in this study is *LCA for*

Experts by Sphera.

4. LCA: Scenarios and additional technical information

Characteristic product properties of biogenic carbon

The declared product does not contain any biogenic Carbon.

Information on describing the biogenic Carbon Content at factory gate

Name	Value	Unit
Biogenic carbon content in accompanying	0.0018	kg
packaging	0.0010	С

Note: 1 kg of biogenic carbon is equivalent to 44/12 kg of CO_2 .

End of life (C1-C4)

In information module C1, the demolition of the mounting system from the building is calculated. The demolition is carried

out with an electric screwdriver. The electrical energy consumption for the tool is assumed to be 0.003 MJ for the specified unit. The electricity consumption is calculated with a German electricity mix.

In information module C3, the waste treatment (sorting and pressing) of the steel is calculated.

Name	Value	Unit
Collected separately waste type waste type	1	kg
Recycling	1	kg

Reuse, recovery and/or recycling potentials (D), relevant scenario information

In Module D, a recycling rate of 85% is assumed (*world steel association*).

Name	Value	Unit
Recycling	0,85	kg

5. LCA: Results

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE OR INDICATOR NOT DECLARED; MNR = MODULE NOT RELEVANT)

= MODULE NOT RELEVANT) Product stage Construction process stage			Use stage					End of life stage				Benefits and loads beyond the system boundaries		
	Manufacturing Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Ľ	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
	A3 A4	A5	B1	B2	B3	B4	-	B6	B7	C1	C2	C3	C4	D
X X	X MNE	D MND	MND	MND	MNR	MN	R MNR	MND	MND	X	Х	Х	X	Х
RESULTS OF TH	HE LCA - E	NVIRON	MENTAL	. IMPA	СТ ассо	ordir	ng to EN 1	5804+A	\2: 1 kç	j I.Chanr	nel MT-	40D		
Parameter			Unit	t	A1-A3	С	1	C2	0	3	C4	D		
Global Warming Poter	Global Warming Potential total (GWP-total)			kg CO ₂	eq	2.83E+00	7.28	E-04	4.41E-03	1.69	9E-02	0	-1.89E+00	
Global Warming Poter	Global Warming Potential fossil fuels (GWP-fossil)			kg CO ₂	eq	2.83E+00	7.28	E-04	4.39E-03	1.69	9E-02	0	-1.89E+00	
Global Warming Poter	ntial biogenic (GWP-bioge	nic)		kg CO ₂		1.64E-03	1.58	E-07	0	4.11	E-06	0	-1.02E-03
Global Warming Poter	ntial luluc (GW	/P-luluc)			kg CO ₂		1.22E-03	1.06		1.61E-05		2E-06	0	-6.72E-04
Depletion potential of			yer (ODP)		kg CFC1		2.15E-12 4.29E-1			7.63E-16 1.58E-1			0	-1.42E-12
Acidification potential		, ,	frachustar	•	mol H ⁺ eq		6.53E-03			1.69E-05 9.99E			0	-4.14E-03
Eutrophication potenti Eutrophication potenti)	kg P eq kg N eq		2.83E-06 1.65E-03	7.24E-11 2.85E-07		1.02E-08 8.07E-06	3.05E-07 4.53E-05		0	-1.44E-06 -1.06E-03
Eutrophication potenti	•		,		mol N e		1.79E-02			9.02E-05		2E-04	0	-1.14E-02
Formation potential of (POCP)	Formation potential of tropospheric ozone photochemical oxidants			kg NMVOC eq		5.47E-03	7.87E-07		1.53E-05	1.45	5E-04	0	-3.5E-03	
Abiotic depletion potential for non fossil resources (ADPE)				kg Sb eq		1.13E-07 3.01E-12		3.09E-10		9E-09	0	-7.25E-08		
Abiotic depletion pote	ential for fossil	resources (A	DPF)		MJ		3.77E+01	3.77E+01 1.07E-02		5.92E-02	2.29E-01		0	-1.68E+01
Water use (WDP)				m ³ world deprive	ed	3.43E-02	4.08		2.27E-05		6E-04	0	-2.2E-02	
RESULTS OF TH	HE LCA - IN	IDICATO	RS TO L	DESCR	i									
Parameter			Unit	F	A1_A3		1	C2		3	C4	D		
						•	A1-A3	C			-			
Renewable primary en Renewable primary en (PERM)				n	MJ MJ		1.56E+00 8E-02	4.08	E-05	3.83E-03 0	1.12	2E-03 0	0	-9.97E-01 0
Renewable primary er (PERM)	nergy resource	es as materia	al utilization	n	MJ		1.56E+00	4.08	E-05	3.83E-03	1.12	2E-03	0	-9.97E-01
Renewable primary er	nergy resource e primary ener	es as materia	al utilization s (PERT)		MJ MJ		1.56E+00 8E-02	4.08	E-05 E-05	3.83E-03 0	1.12	2E-03 0	0	-9.97E-01
Renewable primary er (PERM) Total use of renewable	e primary energy ry energy as e	es as materia rgy resource nergy carrie	al utilization s (PERT) r (PENRE)	1	MJ MJ MJ MJ MJ		1.56E+00 8E-02 1.64E+00 3.77E+01 1.2E-01	4.08E	E-05 E-05 E-02	3.83E-03 0 3.83E-03 5.92E-02 0	1.12 1.12 2.29	2E-03 0 2E-03 9E-01 0	0 0 0 0 0	-9.97E-01 0 -9.97E-01 -1.69E+01 0
Renewable primary er (PERM) Total use of renewable Non renewable primar Non renewable primar Total use of non renewable	e primary energy resource ry energy as e ry energy as n wable primary	es as materia gy resource nergy carrie naterial utiliz	al utilization s (PERT) r (PENRE) ation (PEN	IRM)	MJ MJ MJ MJ MJ MJ		1.56E+00 8E-02 1.64E+00 3.77E+01 1.2E-01 3.79E+01	4.08F 4.08F 1.07F 00 1.07F	E-05 E-05 E-02 E-02	3.83E-03 0 3.83E-03 5.92E-02 0 5.92E-02	1.12 1.12 2.29 2.29	2E-03 0 2E-03 9E-01 0 9E-01	0 0 0 0 0 0	-9.97E-01 0 -9.97E-01 -1.69E+01 0 -1.69E+01
Renewable primary er (PERM) Total use of renewable Non renewable primar Non renewable primar Total use of non renew Use of secondary mat	e primary energy e primary energy ry energy as e iry energy as n wable primary terial (SM)	gy resource nergy carrie naterial utiliz energy reso	al utilization s (PERT) r (PENRE) ation (PEN	IRM)	MJ MJ MJ MJ MJ kg		1.56E+00 8E-02 1.64E+00 3.77E+01 1.2E-01 3.79E+01 1.98E-01	4.08F 4.08F 1.07F 00 1.07F	E-05 E-05 E-02 E-02 E-02	3.83E-03 0 3.83E-03 5.92E-02 0 5.92E-02 0	1.12 1.12 2.29 2.29	2E-03 0 2E-03 0E-01 0 0 0 0 0	0 0 0 0 0 0 0	-9.97E-01 0 -9.97E-01 -1.69E+01 0 -1.69E+01 0
Renewable primary er (PERM) Total use of renewable Non renewable primar Non renewable primar Total use of non renew Use of secondary mat Use of renewable sec	e primary energy ry energy as e ry energy as n wable primary terial (SM) condary fuels (es as materia gy resource nergy carrie naterial utiliz energy reso RSF)	al utilization s (PERT) r (PENRE) ation (PEN	IRM)	MJ MJ MJ MJ MJ MJ kg MJ		1.56E+00 8E-02 1.64E+00 3.77E+01 1.2E-01 3.79E+01	4.08F 4.08F 1.07F 00 1.07F	E-05 E-05 E-02 E-02 E-02	3.83E-03 0 3.83E-03 5.92E-02 0 5.92E-02	1.12 1.12 2.29 2.29	2E-03 0 2E-03 9E-01 0 9E-01	0 0 0 0 0 0	-9.97E-01 0 -9.97E-01 -1.69E+01 0 -1.69E+01
Renewable primary er (PERM) Total use of renewable Non renewable primar Non renewable primar Total use of non renew Use of secondary mat	e primary energy ry energy as e ry energy as n wable primary terial (SM) condary fuels (e secondary fu	es as materia gy resource nergy carrie naterial utiliz energy reso RSF)	al utilization s (PERT) r (PENRE) ation (PEN	IRM)	MJ MJ MJ MJ MJ kg		1.56E+00 8E-02 1.64E+00 3.77E+01 1.2E-01 3.79E+01 1.98E-01 0	4.088 00 4.088 1.078 00 1.078 00 00	E-05 E-05 E-02 E-02 E-02	3.83E-03 0 3.83E-03 5.92E-02 0 5.92E-02 0 0	1.12 1.12 2.29 2.29	2E-03 0 2E-03 0E-01 0 0E-01 0 0E-01 0 0	0 0 0 0 0 0 0 0 0	-9.97E-01 0 -9.97E-01 -1.69E+01 0 -1.69E+01 0 0 0
Renewable primary er (PERM) Total use of renewable Non renewable primar Non renewable primar Total use of non renew Use of secondary mat Use of renewable sec Use of non renewable Use of non renewable Use of net fresh water RESULTS OF TH	e primary energy ry energy as e ry energy as e ry energy as n wable primary terial (SM) condary fuels (e secondary fuels r (FW) HE LCA – V	es as materia gy resource nergy carrie naterial utiliz energy reso RSF) els (NRSF)	al utilization s (PERT) r (PENRE) ation (PEN urces (PEN	IRM) NRT)	MJ MJ MJ MJ MJ kg MJ MJ MJ m ³		1.56E+00 8E-02 1.64E+00 3.77E+01 1.2E-01 3.79E+01 1.98E-01 0 0 1.67E-03	4.088 0 4.088 1.076 0 1.076 0 0 0 0 0 1.616	E-05 E-05 E-02 E-02 E-02 E-02 E-06	3.83E-03 0 3.83E-03 5.92E-02 0 5.92E-02 0 0 0 0 3.48E-06	1.12 1.12 2.29 2.29 2.59	2E-03 0 2E-03 9E-01 0 9E-01 0 0 0 0	0 0 0 0 0 0 0 0 0 0	-9.97E-01 0 -9.97E-01 -1.69E+01 0 -1.69E+01 0 0 0 0
Renewable primary er (PERM) Total use of renewable Non renewable primar Non renewable primar Total use of non renew Use of secondary mat Use of renewable sec Use of non renewable Use of non renewable	e primary energy ry energy as e ry energy as e ry energy as n wable primary terial (SM) condary fuels (e secondary fuels r (FW) HE LCA – V	es as materia gy resource nergy carrie naterial utiliz energy reso RSF) els (NRSF)	al utilization s (PERT) r (PENRE) ation (PEN urces (PEN	IRM) NRT)	MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ OU'	TPU	1.56E+00 8E-02 1.64E+00 3.77E+01 1.2E-01 3.79E+01 1.98E-01 0 0 1.67E-03 T FLOWS	4.086 4.086 1.076 00 1.076 00 00 1.616 accord	E-05 E-05 E-02 E-02 E-02 E-06 E-06 Iing to	3.83E-03 0 3.83E-03 5.92E-02 0 5.92E-02 0 0 3.48E-06 EN 1580	1.12 1.12 2.29 2.29 2.52 4+A2:	2E-03 0 2E-03 0E-01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	-9.97E-01 0 -9.97E-01 -1.69E+01 0 -1.69E+01 0 0 0 0
Renewable primary er (PERM) Total use of renewable Non renewable primar Non renewable primar Total use of non renew Use of secondary mat Use of renewable sec Use of non renewable Use of non renewable Use of net fresh water RESULTS OF TH 1 kg I.Channel M	e primary energy ry energy as e ry energy as e ry energy as n wable primary terial (SM) condary fuels (e secondary fuels r (FW) HE LCA – V /IT-40D	es as materia gy resource nergy carrie naterial utiliz energy reso RSF) els (NRSF)	al utilization s (PERT) r (PENRE) ation (PEN urces (PEN	IRM) NRT)	MJ MJ MJ MJ MJ kg MJ MJ MJ m ³	TPU	1.56E+00 8E-02 1.64E+00 3.77E+01 1.2E-01 3.79E+01 1.98E-01 0 0 1.67E-03	4.088 0 4.088 1.076 0 1.076 0 0 0 0 0 1.616	E-05 E-05 E-02 E-02 E-02 E-02 E-06 E-06 Iing to	3.83E-03 0 3.83E-03 5.92E-02 0 5.92E-02 0 0 0 0 3.48E-06	1.12 1.12 2.29 2.29 2.52 4+A2:	2E-03 0 2E-03 9E-01 0 9E-01 0 0 0 0	0 0 0 0 0 0 0 0 0 0	-9.97E-01 0 -9.97E-01 -1.69E+01 0 -1.69E+01 0 0 0 0 -9.95E-04
Renewable primary er (PERM) Total use of renewable Non renewable primar Total use of non renew Use of secondary mal Use of renewable sec Use of non renewable Use of non renewable Use of not fresh water RESULTS OF TH 1 kg I.Channel M Parameter Hazardous waste disp Non hazardous waste	e primary energy re primary energy as e rry energy as e rry energy as n wable primary terial (SM) condary fuels (e secondary fuels (e secondary fuels r (FW) HE LCA – V /T-40D posed (HWD) e disposed (NH	es as materia rgy resource nergy carrie naterial utiliz energy reso RSF) els (NRSF) VASTE C,	al utilization s (PERT) r (PENRE) ation (PEN urces (PEN	IRM) NRT)	MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ OU'	TPU	1.56E+00 8E-02 1.64E+00 3.77E+01 1.2E-01 3.79E+01 1.98E-01 0 0 1.67E-03 T FLOWS A1-A3	4.086 4.086 1.076 00 1.076 00 00 00 00 00 00 00 00 00 00 00 00 00	E-05 E-05 E-02 E-02 E-02 E-02 E-06 E-06 Iing to E-13	3.83E-03 0 3.83E-03 5.92E-02 0 5.92E-02 0 0 0 3.48E-06 EN 1580 C2	1.12 1.12 2.29 2.29 2.52 4+A2: 5.05	RE-03 0 RE-03 DE-01 0 DE-01 DE-02 DE-03 DE-03 DE-04 DE-05 DE-05 DE-05 DE-05	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-9.97E-01 0 -9.97E-01 -1.69E+01 0 -1.69E+01 0 0 0 0 -9.95E-04
Renewable primary er (PERM) Total use of renewable Non renewable primar Total use of non renew Use of secondary mal Use of non renewable sec Use of non renewable Use of nor renewable Use of not fresh water RESULTS OF TH 1 kg I.Channel M Parameter Hazardous waste disp Non hazardous waste disp	e primary energy re primary energy as e rry energy as e rry energy as n wable primary terial (SM) condary fuels (e secondary fuels (e secondary fuels r (FW) HE LCA – V /T-40D posed (HWD) e disposed (RWD)	es as materia rgy resource nergy carrie naterial utiliz energy reso RSF) els (NRSF) VASTE C,	al utilization s (PERT) r (PENRE) ation (PEN urces (PEN	IRM) NRT)	MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ Unit kg kg kg	TPU	1.56E+00 8E-02 1.64E+00 3.77E+01 1.2E-01 3.79E+01 1.98E-01 0 0 1.67E-03 T FLOWS A1-A3 4.4E-10 3.08E-02 1.88E-04	4.086 4.086 1.076 00 1.076 00 00 00 00 00 00 00 00 00 00 00 00 00	E-05 E-05 E-02 E-02 E-02 E-02 E-06 E-06 E-13 E-06 E-07	3.83E-03 0 3.83E-03 5.92E-02 0 5.92E-02 0 0 3.48E-06 EN 1580 EN 1580 C2 1.59E-13 8.63E-06 6.19E-08	1.12 1.12 2.29 2.29 2.29 2.52 4+A2: 5.05 2.60 8.63	RE-03 0 RE-03 DE-01 0 DE-01 DE-02	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-9.97E-01 0 -9.97E-01 -1.69E+01 0 -1.69E+01 0 0 0 0 -9.95E-04 D 4.42E-11 -2.3E-02 -9.96E-05
Renewable primary er (PERM) Total use of renewable Non renewable primar Total use of non renew Use of secondary mail Use of non renewable sec Use of non renewable Use of nor renewable Use of net fresh water RESULTS OF TH 1 kg I.Channel M Parameter Hazardous waste disp Non hazardous waste disp Components for re-us	e primary energy re primary energy as e rry energy as e rry energy as n wable primary terial (SM) condary fuels (e secondary fuels (e secondary fuels (e secondary fuels (r (FW) HE LCA – V /T-40D posed (HWD) e disposed (NHD) e disposed (RWD) se (CRU)	es as materia rgy resource nergy carrie naterial utiliz energy reso RSF) els (NRSF) VASTE C,	al utilization s (PERT) r (PENRE) ation (PEN urces (PEN	IRM) NRT)	MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ Unit kg kg kg kg	TPU	1.56E+00 8E-02 1.64E+00 3.77E+01 1.2E-01 3.79E+01 1.98E-01 0 0 1.67E-03 T FLOWS A1-A3 4.4E-10 3.08E-02 1.88E-04 0	4.086 4.086 1.076 00 1.076 00 00 00 00 00 00 00 00 00 00 00 00 00	E-05 E-05 E-02 E-02 E-02 E-02 E-06 E-06 E-13 E-06 E-07 E-07	3.83E-03 0 3.83E-03 5.92E-02 0 5.92E-02 0 0 3.48E-06 EN 1580 EN 1580 C2 1.59E-13 8.63E-06 6.19E-08 0	1.12 1.12 2.29 2.29 2.29 2.52 4+A2: 5.05 2.60 8.63	RE-03 0 RE-03 DE-01 0 DE-01 DE-02 DE-05 DE-06 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-9.97E-01 0 -9.97E-01 -1.69E+01 0 -1.69E+01 0 0 0 0 -9.95E-04 -9.95E-04 D 4.42E-11 -2.3E-02 -9.96E-05 0
Renewable primary er (PERM) Total use of renewable Non renewable primar Total use of non renew Use of secondary mat Use of non renewable sec Use of non renewable Use of nor renewable Use of net fresh water RESULTS OF TH 1 kg I.Channel M Parameter Hazardous waste disp Non hazardous waste disp Components for re-us Materials for recycling	e primary energy re primary energy as e rry energy as e rry energy as n wable primary terial (SM) condary fuels (e secondary fuels (e secondary fuels (e secondary fuels (r (FW) HE LCA – V /T-40D posed (HWD) e disposed (NHD) e disposed (RWD) se (CRU) g (MFR)	es as materia rgy resource nergy carrie naterial utiliz energy reso RSF) els (NRSF) VASTE C,	al utilization s (PERT) r (PENRE) ation (PEN urces (PEN	IRM) NRT)	MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ Unit kg kg kg kg kg	TPU	1.56E+00 8E-02 1.64E+00 3.77E+01 1.2E-01 3.79E+01 1.98E-01 0 0 1.67E-03 T FLOWS A1-A3 4.4E-10 3.08E-02 1.88E-04 0 6.3E-03	4.086 4.086 1.076 00 1.076 00 00 00 00 00 00 00 00 00 00 00 00 00	E-05 E-05 E-02 E-02 E-02 E-02 E-06 E-06 E-13 E-06 E-07 E-07	3.83E-03 0 3.83E-03 5.92E-02 0 5.92E-02 0 0 3.48E-06 EN 1580 EN 1580 EN 1580 6.19E-08 0 0 0	1.12 1.12 2.29 2.29 2.52 4+A2: 5.05 2.60 8.63 8.5	RE-03 0 RE-03 DE-01 0 DE-01 0 DE-01 0 RE-05 SE-12 E-05 SE-06 0 E-01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-9.97E-01 0 -9.97E-01 -1.69E+01 0 -1.69E+01 0 0 0 0 -9.95E-04 D 4.42E-11 -2.3E-02 -9.96E-05 0 0
Renewable primary er (PERM) Total use of renewable Non renewable primar Total use of non renew Use of secondary mat Use of non renewable sec Use of non renewable Use of non renewable Use of not fresh water RESULTS OF TH 1 kg I.Channel M Parameter Hazardous waste disp Non hazardous waste disp Non hazardous waste disp Components for re-us Materials for recycling Materials for energy re	e primary energy resource ry energy as e ry energy as e ry energy as n wable primary terial (SM) condary fuels (e secondary fuels (e secondary fuels (e secondary fuels (r (FW) HE LCA – V HE LCA	es as materia rgy resource nergy carrie naterial utiliz energy reso RSF) els (NRSF) VASTE C,	al utilization s (PERT) r (PENRE) ation (PEN urces (PEN	IRM) NRT)	MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ Unit kg kg kg kg	TPU	1.56E+00 8E-02 1.64E+00 3.77E+01 1.2E-01 3.79E+01 1.98E-01 0 0 1.67E-03 T FLOWS A1-A3 4.4E-10 3.08E-02 1.88E-04 0	4.086 4.086 1.076 00 1.076 00 00 00 00 00 00 00 00 00 00 00 00 00	E-05 E-05 E-02 E-02 E-02 E-02 E-06 E-13 E-06 E-07 E-07	3.83E-03 0 3.83E-03 5.92E-02 0 5.92E-02 0 0 3.48E-06 EN 1580 EN 1580 C2 1.59E-13 8.63E-06 6.19E-08 0	1.12 1.12 2.29 2.29 2.52 4+A2: 5.05 2.60 8.63 8.50	RE-03 0 RE-03 DE-01 0 DE-01 DE-02 DE-05 DE-06 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-9.97E-01 0 -9.97E-01 -1.69E+01 0 -1.69E+01 0 0 0 0 -9.95E-04 -9.95E-04 D 4.42E-11 -2.3E-02 -9.96E-05 0
Renewable primary er (PERM) Total use of renewable Non renewable primar Total use of non renew Use of secondary mail Use of non renewable sec Use of non renewable Use of non renewable Use of not fresh water RESULTS OF TH 1 kg I.Channel M Parameter Hazardous waste disp Non hazardous waste disp Components for re-us Materials for recycling	e primary energy resource in primary energy as e in y energy as e in y energy as n wable primary terial (SM) condary fuels (e secondary fuels (e	es as materia rgy resource nergy carrie naterial utiliz energy reso RSF) els (NRSF) VASTE C,	al utilization s (PERT) r (PENRE) ation (PEN urces (PEN	IRM) NRT)	MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ Unit kg kg kg kg kg	TPU	1.56E+00 8E-02 1.64E+00 3.77E+01 1.2E-01 3.79E+01 1.98E-01 0 0 1.67E-03 T FLOWS A1-A3 4.4E-10 3.08E-02 1.88E-04 0 6.3E-03 0	4.086 4.086 4.086 1.076 0 0 1.076 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E-05 E-05 E-02 E-02 E-02 E-02 E-02 E-03 E-06 E-13 E-06 E-13 E-06 E-07 E-03 E-03 E-03 E-02 E-03	3.83E-03 0 3.83E-03 5.92E-02 0 5.92E-02 0 0 3.48E-06 EN 1580 EN 1580 EN 1580 6.19E-08 0 0.19E-08 0.0 0	1.12 1.12 2.29 2.29 2.29 2.52 4+A2: 5.05 2.60 8.63 8.50 8.50	RE-03 0 RE-03 DE-01 0 DE-01 0 DE-01 0 RE-05 DE-05 DE-05 DE-05 DE-06 0 DE-01 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-9.97E-01 0 -9.97E-01 -1.69E+01 0 -1.69E+01 0 0 0 0 -9.95E-04 -9.95E-04 -9.95E-04 4.42E-11 -2.3E-02 -9.96E-05 0 0 0 0
Renewable primary er (PERM) Total use of renewable Non renewable primar Total use of renewable primar Total use of non renew Use of secondary mat Use of renewable sec Use of non renewable use of non renewable Use of net fresh water RESULTS OF TH 1 kg I.Channel M Parameter Hazardous waste disp Non hazardous waste disp Non hazardous waste disp Components for re-us Materials for recycling Materials for energy re Exported electrical en Exported thermal ener RESULTS OF TH	e primary energy resource in ergy resource in ergy energy as e in energy as e in energy as e in energy as n wable primary terial (SM) condary fuels (a secondary fuels (a secondary fuels (a secondary fuels (a secondary fuels (e secondary fuels (a secondary fuels (a secondary fuels (e secondary fuels (in few) HELCA – W in the secondary fuels (in the secondary f	es as materia rgy resource nergy carrie naterial utiliz energy reso RSF) els (NRSF) VASTE C.	al utilization s (PERT) r (PENRE) ation (PEN urces (PEN ATEGOR	RIES A	MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ ND OU' Unit kg kg kg kg kg kg MJ MJ	TPU'	1.56E+00 8E-02 1.64E+00 3.77E+01 1.2E-01 3.79E+01 1.98E-01 0 0 1.67E-03 T FLOWS A1-A3 4.4E-10 3.08E-02 1.88E-04 0 6.3E-03 0 0 0	4.088 4.088 4.088 1.071 0	E-05 E-05 E-02 E-02 E-02 E-02 E-06 E-06 E-13 E-06 E-07 E-06 E-07 E-06 E-07 E-06 E-07 E-06 E-07 E-06 E-07 E-06 E-07 E-02 E-02 E-02 E-02 E-02 E-02 E-02 E-02	3.83E-03 0 3.83E-03 5.92E-02 0 5.92E-02 0 0 3.48E-06 EN 1580 EN 1580 EN 1580 6.19E-08 0 0 0 0 0 0 0 0 0	1.12 1.12 2.29 2.29 2.29 2.52 4+A2: 5.05 2.60 8.63 8.50	RE-03 0 RE-03 DE-01 0 DE-01 0 DE-01 0 RE-05 SE-06 0 E-01 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-9.97E-01 0 -9.97E-01 -1.69E+01 0 -1.69E+01 0 0 0 -9.95E-04 -9.95E-04 -9.95E-04 -2.3E-02 -9.96E-05 0 0 0 0 0 0 0
Renewable primary er (PERM) Total use of renewable Non renewable primar Total use of non renew Use of secondary mat Use of non renewable sec Use of non renewable use of non renewable Use of net fresh water RESULTS OF TH 1 kg I.Channel M Parameter Hazardous waste disp Non hazardous waste disp Non hazardous waste disp Components for re-us Materials for recycling Materials for energy re Exported electrical en Exported thermal ene RESULTS OF TH 1 kg I.Channel M	e primary energy resource in ergy resource in ergy energy as e in energy as e in energy as e in energy as n wable primary terial (SM) condary fuels (a secondary fuels (a secondary fuels (a secondary fuels (a secondary fuels (e secondary fuels (a secondary fuels (a secondary fuels (e secondary fuels (in few) HELCA – W in the secondary fuels (in the secondary f	es as materia rgy resource nergy carrie naterial utiliz energy reso RSF) els (NRSF) VASTE C.	al utilization s (PERT) r (PENRE) ation (PEN urces (PEN ATEGOR	RIES A	MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ WD OU' Unit kg kg kg kg kg kg kg kg kg kg kg kg kg	TPU	1.56E+00 8E-02 1.64E+00 3.77E+01 1.2E-01 3.79E+01 1.98E-01 0 0 1.67E-03 T FLOWS A1-A3 4.4E-10 3.08E-02 1.88E-04 0 6.3E-03 0 0 0 0	4.086 4.086 4.086 1.076 0 0 1.076 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E-05 E-05 E-02 E-02 E-02 E-02 E-02 E-06 E-06 E-13 E-13 E-06 E-07 0 0 0 0 E-03 E-03 E-02	3.83E-03 0 3.83E-03 5.92E-02 0 0 0 3.48E-06 EN 1580 EN 1580 EN 1580 6.19E-13 8.63E-06 6.19E-08 0 0 0 0 0 0 0 0 0 0	1.12 1.12 2.29 2.29 2.52 4+A2: 5.05 2.60 8.63 8.51	RE-03 0 RE-03 RE-03 RE-01 0 RE-01 0 RE-05 RE-06 0 RE-01 0 RE-01 0 RE-01 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-9.97E-01 0 -9.97E-01 -1.69E+01 0 -1.69E+01 0 0 0 -9.95E-04 -9.95E-04 -9.95E-04 -2.3E-02 -9.96E-05 0 0 0 0 0 0 0
Renewable primary er (PERM) Total use of renewable Non renewable primar Total use of renewable primar Total use of non renew Use of secondary mat Use of renewable sec Use of non renewable Use of non renewable Use of not fresh water RESULTS OF TH 1 kg I.Channel M Parameter Hazardous waste disp Non hazardous waste disp Non hazardous waste disp Components for re-us Materials for recycling Materials for energy re Exported electrical en Exported thermal energy the RESULTS OF TH	e primary energy resource in primary energy as e in y energy as e in y energy as e in y energy as n wable primary terial (SM) condary fuels (e secondary fuels (e secondary fuels (e secondary fuels (e secondary fuels (in the secondary fuels (es as materia rgy resource nergy carrie naterial utiliz energy reso RSF) els (NRSF) VASTE C. WD)) idditional	al utilization s (PERT) r (PENRE) ation (PEN urces (PEN ATEGOR	RIES A	MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ ND OU' Unit kg kg kg kg kg kg MJ MJ	TPU' t cccord t se	1.56E+00 8E-02 1.64E+00 3.77E+01 1.2E-01 3.79E+01 1.98E-01 0 0 1.67E-03 T FLOWS A1-A3 4.4E-10 3.08E-02 1.88E-04 0 6.3E-03 0 0 0	4.088 4.088 4.088 1.071 0	E-05 E-05 E-02 E-02 E-02 E-02 E-06 E-06 E-07 E-13 E-06 E-07 E-06 E-07 E-07 E-06 E-07 E-06 E-07 E-06 E-07 E-02 E-02 E-02 E-02 E-02 E-02 E-02 E-02	3.83E-03 0 3.83E-03 5.92E-02 0 5.92E-02 0 0 3.48E-06 EN 1580 EN 1580 EN 1580 6.19E-08 0 0 0 0 0 0 0 0 0	1.12 1.12 2.29 2.29 2.52 4+A2: C 5.05 2.66 8.63 8.51 0 0 0 0 0 0 0 0 0 0 0 0 0	RE-03 0 RE-03 DE-01 0 DE-01 0 DE-01 0 RE-05 SE-06 0 E-01 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-9.97E-01 0 -9.97E-01 -1.69E+01 0 -1.69E+01 0 0 0 -9.95E-04 -9.95E-04 -9.96E-05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Renewable primary er (PERM) Total use of renewable Non renewable primar Total use of non renew Use of secondary mat Use of non renewable sec Use of non renewable Use of non renewable Use of net fresh water RESULTS OF TH 1 kg I.Channel M Parameter Hazardous waste disp Non hazardous waste disp Non hazardous waste disp Components for re-uss Materials for recycling Materials for energy re Exported electrical en Exported thermal enee RESULTS OF TH 1 kg I.Channel M Parameter	e primary energy ry energy as e ry energy as e ry energy as n wable primary terial (SM) condary fuels (e secondary fuels (e secondary fuels (e secondary fuels (e secondary fuels (n FW) HE LCA – V /T-40D posed (HWD) e disposed (NHD) e disposed (RWD) g (MFR) recovery (MER nergy (EEE) orgy (EET) HE LCA – a /T-40D	es as materia gy resource nergy carrie haterial utiliz energy reso RSF) els (NRSF) VASTE C. WD) idditional issions (PM)	al utilization s (PERT) r (PENRE) ation (PEN urces (PEN ATEGOR ATEGOR impact	RIES A	MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ M	TPU' t cccore t se icce	1.56E+00 8E-02 1.64E+00 3.77E+01 1.2E-01 3.79E+01 1.98E-01 0 0 1.67E-03 T FLOWS A1-A3 4.4E-10 3.08E-02 1.88E-04 0 6.3E-03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.086 4.086 4.086 4.086 1.076 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E-05 E-05 E-02 E-02 E-02 E-02 E-02 E-06 E-06 E-06 E-13 E-13 E-06 E-07 0 0 E-06 E-07 0 0 E-02	3.83E-03 0 3.83E-03 5.92E-02 0 5.92E-02 0 0 3.48E-06 EN 1580 C2 1.59E-13 8.63E-06 6.19E-08 0 0 0 0 0 0 0 0 0 0 0 0 0	1.12 1.12 2.29 2.29 2.52 4+A2: 4+A2: 5.05 2.66 8.63 8.51 0 0 0 0 0 0 0 0 0 0 0 0 0	RE-03 0 RE-03 DE-01 0 DE-01 0 DE-01 0 RE-05 SE-12 E-05 SE-06 0 E-01 0 0 0 0 23 BE-06 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-9.97E-01 0 -9.97E-01 -1.69E+01 0 -1.69E+01 0 0 0 0 -9.95E-04 D 4.42E-11 -2.3E-02 -9.96E-05 0 0 0 0 0 0 0 0 0 0 0 0 0
Renewable primary er (PERM) Total use of renewable Non renewable primar Total use of non renew Use of secondary mat Use of non renewable sec Use of non renewable sec Use of non renewable Use of net fresh water RESULTS OF TH 1 kg I.Channel M Parameter Hazardous waste disp Non hazardous waste disp Components for re-us Materials for recycling Materials for renergy re Exported electrical en Exported thermal ene RESULTS OF TH 1 kg I.Channel M Parameter Incidence of disease of Human exposure effic Comparative toxic uni	e primary energy ry energy as e ry energy as e ry energy as n wable primary terial (SM) condary fuels (a secondary fuels (a	es as materia rgy resource nergy carrie haterial utiliz energy reso RSF) els (NRSF) VASTE C. WD) VASTE C. WD) issions (PM) to U235 (IR) ns (ETP-fw)	al utilization s (PERT) r (PENRE) ation (PEN urces (PEN ATEGOR ATEGOR impact	RIES A	MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ M	TPU' t cccord t se icce 5 eq	1.56E+00 8E-02 1.64E+00 3.77E+01 1.2E-01 3.79E+01 1.98E-01 0 0 1.67E-03 T FLOWS A1-A3 4.4E-10 3.08E-02 1.88E-04 0 6.3E-03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.086 4.086 4.086 4.086 1.076 0 0 1.076 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E-05 E-05 E-02 E-02 E-02 E-02 E-02 E-06 E-06 E-06 E-13 E-13 E-06 E-07 0 0 E-06 E-07 0 0 E-02	3.83E-03 0 3.83E-03 5.92E-02 0 5.92E-02 0 0 3.48E-06 EN 1580 C2 1.59E-13 8.63E-06 6.19E-08 0 0 0 0 0 0 0 0 0 0 0 0 0	1.12 1.12 2.29 2.29 2.29 4+A2: 4+A2: 5.05 2.60 8.63 8.51 0 0 0 0 0 0 0 0 0 0 0 0 0	RE-03 0 2E-03 DE-01 0 DE-01 0 DE-01 0 DE-01 0 RE-05 SE-06 0 E-01 0 D E-05 SE-06 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-9.97E-01 0 -9.97E-01 -1.69E+01 0 -1.69E+01 0 0 -1.69E+01 0 0 -9.95E-04 D 4.42E-11 -2.3E-02 -9.96E-05 0 0 0 0 0 0 0 0 0 0 0 0 0
Renewable primary er (PERM) Total use of renewable Non renewable primar Total use of non renew Use of secondary mat Use of non renewable sec Use of non renewable use of non renewable use of non renewable Use of net fresh water RESULTS OF TH 1 kg I.Channel M Parameter Hazardous waste disp Non hazardous waste disp Components for re-us Materials for energy re Exported electrical en Exported thermal ene RESULTS OF TH 1 kg I.Channel M Parameter Incidence of disease of Human exposure effici	e primary energy ry energy as e ry energy as e ry energy as e ry energy as n wable primary terial (SM) condary fuels (e secondary fuels (e secondary fuels (e secondary fuels (e secondary fuels (n FW) HE LCA – V /T-40D posed (HWD) e disposed (NHD) e disposed (RWD) g (MFR) recovery (MER nergy (EEE) orgy (EET) HE LCA – a /T-40D due to PM emi ciency relative it for ecosyster it for humans (es as materia gy resource nergy carrie haterial utiliz energy reso RSF) els (NRSF) VASTE C. WD) vaste C. WD) issions (PM) to U235 (IR) ms (ETP-fw) carcinogenio	al utilization s (PERT) r (PENRE) ation (PEN urces (PEN ATEGOR ATEGOR impact	RIES A	MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ MJ M	TPU t cccore t se cce 5 eq e n	1.56E+00 8E-02 1.64E+00 3.77E+01 1.2E-01 3.79E+01 1.98E-01 0 0 1.67E-03 T FLOWS A1-A3 4.4E-10 3.08E-02 1.88E-04 0 6.3E-03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.086 4.086 4.086 1.076 0 0 1.076 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E-05 E-05 E-02 E-02 E-02 E-02 E-02 E-06 E-06 E-06 E-13 E-13 E-06 E-07 0 0 E-06 E-07 0 0 E-02	3.83E-03 0 3.83E-03 5.92E-02 0 5.92E-02 0 3.48E-06 EN 1580 EN 1580 C2 1.59E-13 8.63E-06 6.19E-08 0 0 0 0 0 0 0 0 0 0 0 0 0	1.12 1.12 2.29 2.29 2.52 4+A2: 4+A2: 5.05 2.66 8.63 8.51 0 0 0 0 0 0 0 0 0 0 0 0 0	RE-03 0 2E-03 DE-01 0 DE-01 0 DE-01 0 RE-05 SE-06 0 E-01 0 RE-01 0 RE-02 SE-06 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-9.97E-01 0 -9.97E-01 -1.69E+01 0 -1.69E+01 0 0 -1.69E+01 0 0 -9.95E-04

Soil quality index (SQP)	SQP	ND	ND	ND	ND	ND	ND		
Disclaimer 1 – for the indicator 'Potential Human exposure efficiency relative to U235'. This impact category deals mainly with the									
eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible									
nuclear accidents, occupational exposure or radioactive waste disposal in underground facilities. Potential ionizing radiation the soil,									

from radon and from some construction materials is also not measured by this indicator.

Disclaimer 2 – for the indicators 'abiotic depletion potential for non-fossil resources', 'abiotic depletion potential for fossil resources', 'water (user) deprivation potential, deprivation-weighted water consumption', 'potential comparative toxic unit for ecosystems', 'potential comparative toxic unit for humans – cancerogenic', 'Potential comparative toxic unit for humans - not cancerogenic', 'potential soil quality index'. The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high as there is limited experience with the indicator.

6. LCA: Interpretation

The dominance analysis shows that the main causes of environmental impacts and indicators are to be found in information module A1. This shows the total global warming potential for material supply with approx. 55% and approx. 10% for production, related to all information modules.

Illustration: Dominance analysis A1- A3

Looking at the material supply of the assembly system and the packaging in the de-tail, it becomes clear which raw materials contribute decisively to the respective environmental impacts and indicators.

7. Requisite evidence

The MT-40D may be used to constitute a supporting system to carry the load of cable trays and ladders but is not within scope of the *DIN EN 61537* which is specific to cable tray systems

8. References

Standards

EN 10346:2015

Continuously hot-dip coated steel flat products for cold fo ming - Technical delivery conditions

EN 15804

EN 15804:2012+A1 2013, Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products.

EN 15804

EN 15804:2012+A2:2019+AC:2021, Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products.

EN 61537

DIN EN 61537 VDE 0639:2007-09 , Cable management Cable tray systems and cable ladder systems (IEC 61537:2006); German version EN 61537:2007 The assembly system itself accounts for 98% of the total global warming potential in information module A1. Approx. 2% is accounted for by the plastic strap

Illustration: Dominance analysis A1

and cable ladder systems. Therefore, requisite evidence pertaining to this standard shall not be given for this product.

ISO 9001:2015

Quality management system

ISO 14001:2015

Environmental Management System

ISO 14025

EN ISO 14025:2011, Environmental labels and declarations — Type III environmental declarations — Principles and procedures

ISO 15686 Buildings and constructed assets

ISO 45001:2018 Occupational health and safety system

Further references

Candidate List of substances of very high concern for

Authorisation

European Chemicals Agency (ECHA), in accordance with Article 50(10) of the REACH regulation

European Technical Approval ETA-21/0414 Hilti Installation channels of MT system

assessed based on EAD 280016-00-0602 'Products for installation systems for supporting technical building equipment'

European Technical Approval ETA-23/0105

European Waste code

in accordance with the European Waste Catalogue (EWC) (EWC 2014/955/EU) Commission Decision amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC of the European Parliament and of the Council

IBU 2021

General Instructions for the EPD programme of Institut Bauen und Umwelt e.V. Version 2.0, Berlin: Institut Bauen und Umwelt e.V.,2021 www.ibu-epd.de

PCR Part A

Institut Bauen und Umwelt e.V, Berlin (pub.): Product Category Rules for Construction Products from the range of

Environmental Product Declarations for Institut Bauen und Umwelt (IBU), Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Project Report according to EN 15804+A2:2019, 202108

PCR Part B

Connection, assembly and installation systems, 10.2022

Regulation (EU) No. 305/2011 (CPR)

Regulation (EU) No 305/2011 of the European Parliament andof the Council of 9 March 2011 laying down harmonisedconditions for the marketing of construction products and repealing Council Directive 89/106/EEC Text with EEArelevance

Sphera

LCA for Experts: Ganzheitliche Bilanzierung Leinfelden-Echterdingen; Sphera Solution GmbH (Hrsg.) http://www.gabi-software.com/deutsch/index/

World steel association

https://www.worldsteel.org/steel-topics/raw-materials/

Publisher

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Programme holder

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Author of the Life Cycle Assessment

FIT-Umwelttechnik GmbH Westerstr. 13 38442 Wolfsburg Germany 05362 72 69 474 bertram@fit-umwelttechnik.de www.fit-umwelttechnik.com

Owner of the Declaration

Hilti Aktiengesellschaft Feldkircher Strasse 100 9494 Schaan Liechtenstein +423 234 2111 HAGHSE@hilti.com www.hilti.com